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Dear Fellow Pedometricians and Friends, 

I would like to start this issue of Pedometron with 

congratulations to Dr. Budiman Minasny of 

University of Sydney and Dr. Lin Yang of Chinese 

Academy of Sciences for being elected as the next 

chair and vice chair of Pedometrics Commission, 

respectively. I would also like to thank them for their 

willingness to serve. 
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I would like to take the liberty of using this issue as 

the beginning of transition to their term by 

documenting the discussions which started when Dick 

Brus and I took and continue up to this point. Most of 

these issues were discussed and solutions were 

recommended at the business meeting at Pedometrics 

2013 in Nairobi, Kenya. Here I share these 

discussions with you. 

The first issue is the financial accounting for the 

Commission. I remember that Thorsten Behrens had 

much difficulty to setup an account for the 

Commission in Germany due to regulations on 

banking in Germany. It took me sometime to figure 

out how to set it up in USA which is much more 

lenient toward this type of accounts. In addition, to 

transfer the fund every four years is a waste not only 

in terms of energy but also in terms of costs because 

of the wiring fees. The suggested solution from the 

business of meeting at Pedometrics 2013 is to set up a 

treasurer position for the Commission and ask 

someone who is very stable to serve as the treasure. 

This treasurer is not an official position of IUSS 

which only elects the chair and vice-chair, but a 

position within the commission and for the 

convenience of the commission and under the 

direction of the chair and vice chair. 

The second issue is the hosting of the Pedometrics 

website. The website is an important outlet and face of 

the Commission but it requires quite a bit of technical 

knowledge to maintain it. We had a series of issues 

with the current provider and have investigated other 

venues or companies for hosting the sites. Eventually, 

we did not move upon a request from Budiman under 

the impression that he is designing a new solution to 

it. Nevertheless, the maintenance of this website 

should not be the duty of the chair, nor of the vice 

chair, as it asks for specific expertise not required for 

these two positions and most people elected into these 

positions would not have this specific technical 

expertise. The recommendation from the business 

meeting is to set up a webmaster position with similar 

status in the Commission as the above mentioned 

treasure. 

The third issue is the Pedometrics conference series.  
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There are two specific aspects to this issue. The first 

aspect is “too many conferences” for the 

pedometrics/digital soil mapping professionals. 

Currently, we have Pedometrics and Global 

Workshop on Digital Soil Mapping (from the 

Working Group on digital soil mapping) alternate 

every year. In addition, the other two working groups 

(the Working Group on proximal sensing and the 

Working Group on soil monitoring) also hold regular 

or semi-regular meetings. Furthermore, the regional 

soil science societies also have sessions on 

pedometrics. All of these compete for research 

outcomes and travel resources. As a result attendance 

to some of these conferences was low. It has been a 

challenge to attract high quality papers for the special 

issue of Geoderma from the Pedometrics conference 

due to this “thin-spread” of the research outcomes 

over so many similar conferences. What was 

suggested at the business meeting is to merge the 

conferences organized by the three Working Groups 

(DSM, proximal sensing, and soil monitoring) with 

the main biennial Pedometrics conferences to form a 

bigger conference with general pedometrics sessions 

and working group specific sessions.  

 Elected Officials of Pedometrics Commission 

The second aspect is the financial contribution from 

the Pedometrics conference series to the Commission. 

Currently, the Commission does not have any 

channels of revenue generation and its activities are 

very much limited. One suggestion was to have the 

Pedometrics conference generate a surplus to be 

transferred to the Commission. This can be achieved 

through a slight increase in conference registration fee 

and/or the proceeds from the pre-conference 

workshops. Through the latter Pedometrics 2013 

generated about $US1000 for the Commission. This 

was the result of the efforts by Leigh, Keith and the 

workshop instructors (Gerard Heuvelink, Tomislav 

Hengl, myself). I urge future conference organizers 

and workshop instructors to make this effort. 

I hope that I have not bored you all with these details 

but I felt, through my experience as the chair of the 

Commission, that these are important issues for the 

Commission to continue as one of the most vibrant 

and nurturing organizations in IUSS. 

Best wishes,  

A-Xing Zhu 

Vice Chair Elected: Dr. Lin Yang 

From the Chair 

News and Updates 

Chair Elected: Dr. Budiman Minasny 

Budiman Minasny is an associate professor in soil 

modelling. He was awarded the Future Fellowship 

from the Australian Research Council to develop 

dynamic soil-landscape models. He is interested in 

finding how soil change in space and time. He has an 

undergraduate degree from Universitas Sumatera 

Utara in Indonesia and a MAgr and PhD degrees in 

soil science from the University of Sydney. 

Lin Yang is Associate Professor of Geography, at the 

Institute of Geographical Sciences and Natural 

Resources, Chinese Academy of Sciences. Ph.D., 

2009, Institute of Geographical Sciences and Natural 

Resources, Chinese Academy of Sciences. Her 

specialism is spatial sampling design and digital soil 

mapping; and she has been working in digital soil 

mapping for the past 10 years, producing over 20 

research articles. 
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 Election of the Working Group on Proximal 

Soil Sensing 

News and Updates 

Dr. Raphael Viscarra-Rossel and Dr. Viacheslav 

Adamchuk
 

as chair and vice chair
 

 have been 

leading the Working Group on Proximal Soil Sensing 

(PSS) since its conception in 2008. The working 

group is one of the most active working groups in 

IUSS. The WG attracted and nurtured a cohort of 

people who are very enthusiastic and passionate about 

PSS. We thank Dr. Raphael Viscarra-Rossel and Dr. 

Viacheslav Adamchuk for their great contribution 

during the early stage of this working group. 

The election was held in September last year by email. 

There were three candidates for the chair and two for 

the vice chair. The candidates for chair were Marc van 

Meirvenne, Bo Stenberg and Zhou Shi. The 

candidates for vice-chair were Robin Gebbers and 

Abdul Mouazen. Forty people voted and Dr. Marc van 

Meirvenne and Dr. Robin Gebbers were elected as the 

chair and the vice chair of the working group, 

respectively. Congratulations to both of them! 

Chair Elected: Dr. Marc Van Meirvenne 

(i.e. including the dielectric permittivity). Recently he 

purchased the Dualem 421S sensor for deeper 

exploration. Dr. Van Meirvenne was one of the 

initiators of the creation of the WG on Proximal Soil 

Sensing. He and his collaborators have actively 

participated at the biennial workshops of the WG. 

Vice Chair Elected: Dr. Robin Gebbers 

Dr. Marc Van Meirvenne is a professor in Soil 

Science, Department of Soil Management, Ghent 

University, Belgium. He is a former chairman of the 

Working Goup on Pedometrics (1998-2002) with 

interests and activities related to Proximal Soil 

Sensing. His first soil sensor was an EM38DD (first 

buyer in Europe, in 2000) which was used mainly to 

characterize soil variability for soil mapping and 

(precision) agriculture. Increasingly Dr. Van 

Mairvenne included archaeological and environmental 

targets into his mapping goals. He also expanded to 

the Dualem 21S (first buyer worldwide in 2007) and 

since then he specialized into the processing of 

multireceiver EMI images, both electrical conductivity 

and magnetic susceptibility. More recently (2011) he 

included ground penetrating radar (3D-Radar) to fully 

characterize the soil medium in all its EM properties 

Dr. Robin Gebbers has studied agronomy (agro-

ecology) in Rostock, Germany. His work on soils 

started with his Bachelor thesis on earthworm 

abundance in organic and conventional farming. In his 

Master thesis he used geostatistics, DEM and aerial 

imagery to predict soil properties at a very fine scale. 

At his first job as a scientist he took photos from a 

small aircraft and processed them together with DEMs 

in order to assess soil erosion at the field scale. In his 

way Dr. Gebbers became involved with precision 

agriculture. He did research on site-specific 

fertilization for four years within Germany’s largest 

precision agriculture project “preagro”. After that he 

was working on the comparison of geo-electrical 

sensors for soil mapping at the University of Potsdam 

with Dr.Erika Lück. He started at the Leibniz-Institute 

of Agricultural Engineering in Potsdam, Germany in 

2006. There he finished his PhD thesis on „Accuracy 

Assessment in the System of Site-Specific Base 

Fertilization“. At the same institute he became a 

senior scientist and the coordinator of research on 

"precision farming and precision livestock farming". 

The team comprises about 20 scientists. His research 

interests are in proximal soil sensing, crop sensing and 

spatial data analysis for precision agriculture. Among 

his main publications were book chapters for 

Margaret Oliver’s “Geostatistical Applications for 

Precision Agriculture” and Martin Trauth’s 

“MATLAB Recipes for Earth Sciences” as well as an 

invited review paper on “Precision Agriculture and 

Food Security” in Science, coauthored by Dr. 

Viacheslav Adamchuk. 



Bas Kempen (Bas.Kempen@wur.nl) 

Bas (1980) holds MSc degrees in Soil inventory & 

Land Evaluation and Geo-Information science & 

Remote Sensing from Wageningen University. He 

obtained his PhD from Wageningen University in 

2011 with a thesis on digital soil mapping.  

Bas currently works for ISRIC - World Soil 

Information where he is in charge of the SOTER 

programme. His research interests are in using 

quantitative methods for updating soil maps and 

sampling for validation of (soil) maps. He lives in 

Wageningen, The Netherlands. 

News and Updates 

Jing Liu (jliu93@wisc.edu) 

Jing is a PhD candidate in the Department of 

Geography, University of Wisconsin-Madison. Her 

research interests include digital soil mapping, 

machine learning and data mining applied to spatial 

analysis and spatial high-performance/throughput 

computing technologies. 

 

 

 

 

 

 

Brendan Malone (brendan.malone@sydney.edu.au) 

Brendan is a post-doctoral researcher within the Soil 

Security Laboratory at the University of Sydney spec- 

ializing in pedometric, chemometric and digital soil 

mapping and assessment research. Brendan is innately 

passionate about soil in general, and believes sound 

innovations,  particularly in pedometrics and digital 

soil mapping, can and will contribute largely to 

solving many of the environmental and natural 

resource issues we are experiencing around the world 

today. 

Joulia Meshalkina (jlmesh@list.ru) 

Joulia is working as a senior researcher on department 

of Agriculture and Agroecology  of Soil Science 

faculty of Moscow Lomonosov State University 

(Moscow, Russia). Fields of interest are Soil science, 

Ecology, Data Management, Geostatistics, Precision 

Agriculture, Digital Soil Mapping. I am secretary of 

the Pedometrics commission of Dokuchaev Soil 

Science Society (Russia). 

 New Additions to the Advisory Board 
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One suggestion from the business meeting at 

Pedometrics’ 2013 is to inject new blood into the 

advisory board. Below are the new additions since the 

conference: 

Bui Le Vinh (bui_le_vinh@yahoo.com) 

Bui Le Vinh is a Soil Science lecturer at Faculty of 

Land Management, Hanoi University of Agriculture, 

PhD candidate at Hohenheim University, PhD 

research topic: Soil mapping using fuzzy logic method 

for a region having strong relief variations of 

northwestern Vietnam. 

Pierre Roudier (roudierp@landcareresearch.co.nz) 

Pierre Roudier is working as a scientist at Landcare 

Research - Manaaki Whenua, and is based in 

Palmerston North, New Zealand. His research focuses 

on digital soil mapping, visible near-infrared spectro- 



News and Updates 

Bertin Takoutsing (B.Takoutsing@cgiar.org) 

Bertin Takoutsing is a Land and Water Management 

Scientist at the World agroforestry Centre (ICRAF). 

He oversees and takes a lead role in the 

implementation of Land Health program and the 

application of Infrared spectroscopy in assessing soil 

quality in West and Central Africa region.  Prior to 

joining ICRAF, Bertin Takoutsing held numerous 

leadership positions in development organisations and 

has expertise in sustainable land management. 

Lin Yang (yanglin@lreis.ac.cn) 

Lin Yang is Associate Professor of Geography, at the 

Institute of Geographical Sciences and Natural 

Resources, Chinese Academy of Sciences. Ph.D., 

2009, Institute of Geographical Sciences and Natural 

Resources, Chinese Academy of Sciences. Her 

specialism is spatial sampling design and digital soil 

mapping; and she has been working in digital soil 

mapping for the past 10 years, producing over 20 

research articles. 
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scopy and wireless sensor networks for the study of 

soils in New Zealand and in the Dry Valleys of 

Antarctica. 

 

Based on the business meeting at Pedometrics 2013 in 

Nairobi, Kenya, the Award Committee for 

Pedometrics was reformulated. The Committee is now 

charged with the handling of the following two 

awards: the once every four year Webster Medal 

Award and the annual Best Paper Award. 

The membership on the committee was nominated and 

voted by the advisory board. The makeup of the 

current award committee is: 

 The formation of the award committee and 

its charges 

Chair
 

David Rossiter 

Members (in alphabetical order of last name):  

• Sabine Grunwald  

• Alex McBratney  

• Margaret Oliver  

• Lin Yang 

We congratulate them for earning the trust and thank 

them for their contribution! 

. 

At the Pedometrics conference in Nairobi the best 

paper awards in Pedometrics were announced. These 

were: 

• 2010: B.P. Marchant, N.P.A. Saby, R.M. Lark, 

P.H. Bellamy, C.C. Jolivet & D. Arrouays: 

‘Robust prediction of soil properties at the national 

scale: Cadmium content of French soils’. 

European Journal of Soil Science, 61,144–152. 

• 2011: D.J. Brus and J.J. de Gruijter: ‘Design-based 

Generalized Least Squares estimation of status and 

trend of soil properties from monitoring 

data’. Geoderma,164,172–180. 

• 2012: R.M. Lark: ‘Towards soil 

geostatistics’. Spatial Statistics, 1,92–98 

 The best paper awards 

 Pedometrics 2015 

Pedometrics 2015 will be held in Cordoba, Spain, 

September 2015, with dates to be announced soon. 

Prismatic soil 

aggregates from 

Posadas (Cordoba, SW 

Spain). Photo courtesy 

of José M. Recio 

(University of Cordoba, 

Spain). 

Roman bridge, Cordoba, Spain 



SoLIM Solutions 2013 is the latest version of 

software for digital soil mapping using the SoLIM 

concept. If you are not familiar with the SoLIM 

concept, please visit http://solim.goegraphy.wisc.edu. 

Compared to the previous versions, SoLIM Solutions 

2013 has quite a number of significant improvements 

and new features based on the recent research 

achievements from the SoLIM group both in U.S. and 

in China. Some highlights are listed below: 

• More flexible ways to encode expert knowledge 

Soil mapping based on expert knowledge has always 

been an important feature in SoLIM. Experts encode 

their knowledge into fuzzy rules for soil inference. 

The new version provides interactive visual interface 

for fuzzy rule definition. It also added more methods 

for fuzzy rule definition, such as fitting fuzzy 

membership curves using key points. Those 

enhancements greatly facilitate the elicitation of 

knowledge from soil experts. 

• Knowledge extraction (data mining) from soil 

maps 

Legacy soil maps serve as a valuable knowledge 

source for digital soil mapping. The new version of 

SoLIM supports the extraction of fuzzy rules 

(knowledge) from soil maps. Those extracted rules 

can be easily incorporated into knowledge based soil 

mapping. 

• Knowledge extraction from purposive sampling 

For areas with no local soil surveys and no legacy 

maps, field sampling is needed to make soil maps. 

This new version supports the design of efficient 

sampling scheme (purposive sampling) so that it can 

capture soil spatial variation with a few field 

samples. Once the field samples are collected, 

knowledge can be extracted from those samples and 

fed into knowledge based soil mapping. 

• Soil covariate extraction from remote sensing 

For areas with less terrain variation, commonly-used 

predictor variables (e.g. terrain attributes) are 

insufficient to predict soil distributions. The new 

version supports the extraction of effective soil 

spatial covariates from remotely-sensed surface 

feedback dynamics. Those spatial covariates can 

help to differentiate different soils and work together 

with other predictor variables. 

News and Updates 
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• Data-driven (sample-based) soil mapping 

With the increasingly available soil samples from 

different sources (e.g. citizen science data, legacy 

sample achieves), data-driven approach is 

increasingly important in digital soil mapping. In 

addition to knowledge based soil mapping, this new 

version of SoLIM introduces data-driven soil 

mapping. It supports soil mapping using ad-hoc field 

samples. It also provides prediction uncertainty for 

every location a predication is made. 

 Recent development from SoLIM 

 Champagne for Jasper Vrugt 

On December 20, 2013, Jasper Vrugt visited 

Wageningen to give a lecture and educate 

Wageningen hydrologists. Gerard Heuvelink took the 

opportunity to hand over the bottle of champagne that 

Jasper had won by being the first to solve the ‘Nearest 

Neighbour Interpolation Pedomathemagica Inverse 

Modelling Problem’ (see Pedometron 31). Jasper said 

“Just in time for the New Year celebrations!”. 



Reports 

I. Pre-conference Data Analysis Workshop (26-27 August 2013) 

Fifty-six participants were exposed to a variety of analytical techniques for mapping soil properties and 

understanding spatial dependencies of soil variables. Gerard Heuvelink from ISRIC led a workshop highlighting 

geostatistical techniques, Tomislav Hengl from ISRIC showed products using the GSIF package, and A-Xing 

Zhu from the University of Wisconsin (and his team of Jing Liu, Lin Yang and Fei Du) led a hands-on tutorial 

on using SOLIM. This was the largest data analysis workshop hosted by the Pedometrics Division of the IUSS! 

II. Pedometrics Main Conference (29-30 August 2013) 

Over 65 participants, from fifteen countries were welcomed to Pedometrics 2013 by Director General of 

ICRAF, Dr. Tony Simons; Director of Soils Research Area at CIAT, Dr. Deborah Bossio; Dr. Anthony Esilaba, 

Principle Scientist at Kenyan Agricultural Research Institute (KARI), and Dr. A-Xing Zhu, Chair of Division 

1.5: Pedometrics of the International Union of Soil Science. This was the first Pedometrics Conference hosted 

by a CGIAR centre and the first time held in the Tropics!  

National media coverage included:  

Kenya Broadcasting Corporation: http://www.youtube.com/watch?v=10RBTFrQz44&feature=youtu.be&a; 

www.scienceafrica.co.ke and our CIAT blog: http://ciatblogs.cgiar.org/soils/pedometrics-comes-to-the-tropics   

Keynote addresses were also delivered by Dr. Tor Vågen, Senior Scientist at ICRAF and leader of the 

GeoScience Lab (gsl.worldagroforestry.org) and Marco Nocita on behalf of SOIL ACTION group at the Joint 

Research Centre of the European Commission.  

Main topics discussed at the conference included: new approaches in digital soil mapping; uncertainty analysis; 

sampling design and scale; advances in proximal and remote sensing; new pedotransfer functions for tropical 

soils; and analytical techniques for assessing soil organic carbon stocks. At the cocktail party the best paper 

awards for 2010, 2011, and 2012 were given. The references to these papers are posted at 

www.pedometrics.org. Alexey Sorokin was awarded best poster presentation for Pedometrics 2013, presented 

by Dick Brus of Alterra.  
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Reports 

Participants visited the Mpala Research Centre (MRC) on the Laikipia Plateau in 

north-central Kenya. En route, soils under remnant Mt. Kenya forest were viewed 

and different soil classification systems were discussed (e.g., Russian, Portuguese, 

WRB and US). 

Photographed on the top right, Gerard Heuvelink is reading the WRB definition of 

an Acrisol, while Colby Brungard (below right) of Utah State University and 

David Brown of Washington State University classified the soil as a Typic 

Kandiusult using US Soil Taxonomy. 

The Laikipia Plateau - located northwest of Mount Kenya (Africa’s second highest 

mountain at 5,199 m) spans 10,000 km2 and forms the core of the wider 56,000 

km2 Ewaso ecosystem. The semi-arid rangelands are  important grazing lands and 

encompass privately owned ranches and conservancies as well as community 

grazing lands for the Maasai and Samburu tribes. 

Maasai pastoralists explained current community grazing projects and the 

importance of maintaining land health due to the fragility of these soils (photo 

right at the gully erosion site). 

At Mpala we viewed landscapes dominated by Acacia drepanolobium on vertic 

soils (below left). Vince Lang is photographed bottom right using HCl to identify 

carbonates in the soil matrix. Lunch was enjoyed at MRC on the Ewaso Nyiro 

river (photo bottom right). 

The final profile was classified as a Calcisol in the SOTER map, but the group 

identified it as a Lixisols due to clay illuviation, lack of high amounts of CaCO3, 

and a pH of 6.5. 

Emeritus Russian colleague, Nataliya Belousova, is photographed in this profile 

(below center). Nataliya was eager to enter each soil pit and explore the properties 

of tropical soils! 
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Leonardo Ramirez-Lopez1,2 and Antoine Stevens3 
1Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland. 
2Institute of Terrestrial Ecosystems, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland 
3Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain, Belgium 

1. Introduction 

Visible and infrared diffuse reflectance (vis-IR) spectroscopy has rapidly become a popular and valuable tool 

among the pedometric community due to its widely known and well documented advantages over conventional 

methods of soil analysis (e.g. non-destructive, cheaper and faster). Soil vis-IR spectral libraries containing large 

amounts of soil data are being developed by different people around the world. Some of these libraries such as the 

(large-scale) ones developed by the World Agroforestry Centre and by the Joint Research Centre of the European 

commission are already freely available. In this respect, we decide to release two R packages for analyzing soil 

vis-IR spectra. The first package includes functions for spectral pre-processing and calibration sampling, while 

the second one includes functions for modeling complex spectral data. The two packages presented here were 

developed over the past two years gathering functions implemented for our regular work needs, courses and 

functions implemented just for fun during our spare time. Both packages can be downloaded the CRAN 

repository (http://cran.r-project.org/web/packages/prospectr/index.html; http://cran.r-

project.org/web/packages/resemble/index.html) and from the package development websites 

(http://antoinestevens.github.io/prospectr/; http://l-ramirez-lopez.github.io/resemble/) 

1.1 Why in R?  

While Matlab remains, by far, the programming language of choice in the chemometric community, the use of R 

is rapidly expanding and seems to have already overtaken Octave and SAS (Fig.1). This increasing popularity is 

probably driven by the rise of R as a programming language itself (rstats.com). This trend participates to the 

increasing need for more reliability and reproducibility in published research. R is a free and open source 

software and hence R-based codes facilitates the understanding and sharing of research results (Eaton, 2012). 

Quoting Ince et al (2012), “… we have reached the point that, with some exceptions, anything less than release of 

actual source code is an indefensible approach for any scientific results that depend on computation, because not 

releasing such code raises needless, and needlessly confusing, roadblocks to reproducibility.”. Using open source 

codes gives also to the researchers a greater control on their research, as they are able to inspect the code and 

learn about the algorithms they are using. Besides, it is somehow easier to modify and improve open source 

programs, therefore fostering innovation, as demonstrated by the popularity of version control systems and the 

concept of social coding. Even the limitations related to the lack of a graphical user interface is  progressively 

breaking with the development programs capable of wrapping R scripts up in Graphical User Interfaces or 

interactive web applications.  

There is now a broad array of R packages that can be used for chemometrics and spectroscopic analysis. Two 

CRAN task views dedicated to “Chemometrics and Computational Physics” and “Multivariate Statistics” suggest 

already more than 190 R packages. It is clear, however, that there are still many functions and algorithms that are 

not yet implemented in the R language are commonly available in Matlab or proprietary software such as WinISI 

(FOSS NIRSystems/Tecator Infrasoft International, LLC, Silver Spring, MD, USA) or Unscrambler (CAMO, 

PROCESS, AS, OSLO, Norway). Here, we make a brief overview of the capabilities of two new R packages 

called "prospectr" and "resemble" that implement algorithms for (i) pre-processing, (ii) sample selection and (iii) 

memory-based learning (a.k.a local regression). 

 
Figure 1. Number of Google Scholar hits by year using the 

search string: NIR + spectroscopy + name_of_software, where 

name_of_software is a string with the following values: "SAS 

Institute"-JMP; "R software"  OR "R project" OR" r-project" 

OR "R Core Development Team" OR "R Development Core 

Team" OR "R package"; "Matlab" OR "the Mathworks"; 

"Octave"; "Unscrambler"; "WinISI". 

 



Papers 
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2. The prospectr package 

The prospectr package gathers algorithms commonly-used in spectroscopy for pre-treating spectra and select 

calibration samples. Some of the pre-processing functions are already available in other package. However, 

functions in prospectr package are optimized for speed using C++ code. This is especially useful when working 

on large databases because we often do not know which pre-processing or combination of pre-processing options 

will actually improve the quality of the spectra (for further chemometric analyses) so that many of them are 

usually tested.  

The pre-processing functions that are currently available in the package are listed in Table 1. The aim of signal 

pre-treatment is to improve data quality before modeling and remove physical information from the spectra. 

Applying a pre-treatment can increase the repeatability/reproducibility of the method, model robustness and 

accuracy. 

Table 1. Pre-processing functions available in the prospectr package 

Function name Description 

Movav simple moving (or running) average filter 

savitzkyGolay Savitzky-Golay smoothing and derivative 

gapDer gap-segment derivative 

continuumRemoval compute continuum-removed values 

Detrend detrend normalization 

standardNormalVariate standard normal variate transformation 

binning average a signal in column bins 

resample resample a signal to new band positions 

resample2 resample a signal using new FWHM values 

blockScale block scaling 

blockNorm sum of squares block weighting 

spliceCorrection Correct spectra for steps at the splice of detectors in an ASD FieldSpec Pro 

The prospectr package also implements several functions for selecting samples in spectral datasets. Spectroscopic 

models are usually developed on a representative portion of the data (training/calibration set) and validated on the 

remaining set of samples (test/validation set) (Table 2). There are many solutions for selecting calibration 

samples, for instance: (i) random selection, (ii) stratified random sampling on percentiles of a given response 

variable and (iii) purposive sampling based on information contained in the spectral data. The prospectr package 

focuses on the third solution which can ensure a good prediction performance of spectroscopic models. Generally 

these algorithms will create a training set having a flat distribution over the spectral space. 

Table 2. Calibration sampling functions available in the prospectr package 

Function name Description 

kenStone 

Kennard–Stone algorithm (Kennard and Stone, 1969) selects the two most spectrally 

distant samples and then iteratively select the rest of the samples by selecting (at each 

iteration) the farthest sample to the points already selected 

duplex 
DUPLEX algorithm of Snee (1977) is similar to Kennard-Stone but selects also a 

set of validation samples that have similar properties to the training set 
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Table 2 (cont.). Calibration sampling functions available in the prospectr package 

Function name Description 

puchwein 
Algorithm of Puchwein (1988) selects samples based on their mahalanobis distance to 

the centre of the data 

shenkWest 

SELECT algorithm of Shenk and Westerhaus (1991) is an iterative method which 

selects samples having the maximum number of neighbours within a given distance 

and remove the neighours samples from the list of samples 

naes 

Performs a k-means clustering with the number of cluster equal to the number of 

samples to select and select one sample in each cluster either randomly or by another 

decision rule (Naes et al., 2002) 

honigs Select samples based on the size of their absorption features (Honigs et al., 1985) 

In addition, prospectr provides two other functions to read binary or text files from an ASD instrument (readASD) 

and detect replicate outliers with the Cochran C test (cochranTest).  

3. The resemble package 

The initial idea of developing the resemble package was to implement a function dedicated to non-linear 

modelling of complex soil visible and infrared spectral data based on memory-based learning (MBL, a.k.a 

instance-based learning or local modeling in the chemometrics literature). Several authors have shown that MBL 

algorithms usually outperform other algorithms used for modeling soil spectral data (e.g. Genot et al., 2011; 

Ramirez-Lopez et al., 2013a).  

The package also includes functions for: computing and evaluate spectral dissimilarity matrices; projecting the 

spectra onto low dimensional orthogonal variables; removing irrelevant spectra from a reference set; plotting 

results, etc. The main functions of the package are summarized in Table 3. As in the prospectr package, several of 

the functions included in the package use C++ code. Furthermore, some of them offer the possibility to be 

executed in parallel (i.e. using multiple CPU or processor cores).  

Table 3. Summary of the main functions included in the resemble package 

Function name Description 

Computing and evaluate spectral dissimilarity matrices 

fDiss Euclidean, Mahalanobis and cosine (a.k.a spectral angle mapper) dissimilarities 

corDiss Correlation and moving window correlation dissimilarities 

sid 
Spectral information divergence between spectra or between the probability distributions 

of spectra 

orthoDiss Principal components and partial least squares dissimilarity (including several options) 

simEval 
Evaluates a given similarity/dissimilarity matrix based on the concept of side information 

(Ramirez-Lopez et al., 2013ab) 

Functions to perform orthogonal projections 

pcProjection Projects the spectra onto a principal component space.  

plsProjection Projects the spectra onto a partial least squares component space  

orthoProjection Reproduces either the pcProjection or the plsProjection functions 

Functions for performing local modeling 

mblControl controls some modeling aspects of the mbl function 

mbl 
models the spectra and predicts a given response variable by using memory-based 

learning 
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In order to expand a little bit more on the mbl function, let's define first the basic input datasets: 

• Reference (training) set: Dataset with n reference samples (e.g. spectral library) to be used in the calibration of  

spectral models. Xr represents the matrix of samples (containing the spectral predictor variables) and Yr 

represents a given response variable corresponding to Xr. 

• Prediction set: Data set with m samples where the response variable (Yu) is unknown. However, it can be 

predicted by applying a spectral model (calibrated by using Xr and Yr) on the spectra of these samples (Xu).  

In order to predict each value in Yu, the mbl function takes each sample in Xu and searches in Xr for its k-nearest 

neighbors (most spectrally similar samples). Then a (local) model is calibrated with these (reference) neighbors 

and it immediately predicts the correspondent value in Yu from Xu. In the function, the k-nearest neighbor search 

is performed by computing spectral dissimilarity matrices between samples. The mbl function offers the 

following regression options for calibrating the (local) models: Gaussian process, Partial least squares, and two 

different version of weighted average partial least squares regression. 

4. Short R code examples of some of the functions 

For the following examples, the data of the Chimiométrie 2006 challenge (Fernandez Pierna and Dardenne, 2008) 

will be used. These are basic examples, therefore detailed information about the algorithms are not given here. 

We encourage the interested reader to have a look on the packages documentation. First, let’s install and import 

the packages and the data: 
install.packages("prospectr") 
install.packages("resemble") 
library(prospectr) 
library(resemble) 
data(NIRsoil) 

The spectral data can be smoothed by using the Savitzky and Golay filter. In this case we use a window size of 11 

spectral variables and a polynomial order of 3 (no differentiation). After smoothing, the original data is then 

replaced with the filtered spectra: 
sg <- savitzkyGolay(NIRsoil$spc, p = 3, w = 11, m = 0) 
NIRsoil$spc <- sg 

Different calibration sampling algorithms can be used, here we ilustrate the use of the respective functions for 

selecting samples based on kennard-stone and k-means (naes) algorithms. In the following example 40 samples 

are selected based on the first 17 principal components of the spectra: 
kss <- kenStone(X = NIRsoil$spc, k = 40, pc = 17) 
kms <- naes(X = NIRsoil$spc, k = 40, pc = 17) 

The indices of the selected calibration samples can be accessed by: 
kss$model 
kms$model 

The Chimiométrie 2006 challenge data already contained a column which determine the samples that should be 

used for training the spectral models. In the following examples we show how to predict the "unknown" values of 

soil total carbon (Ciso) by using the memory-based learning function included in the resemble package. First let’s 

remove the samples with missing values of Ciso and then split the data into train and "unknown" sets: 
NIRsoil <- NIRsoil[!is.na(NIRsoil$Ciso),] 
X.unknown <- NIRsoil$spc[!NIRsoil$train,] 
Y.unknown <- NIRsoil$Ciso[!NIRsoil$train] 
Y.train <- NIRsoil$Ciso[!!NIRsoil$train] 
X.train <- NIRsoil$spc[!!NIRsoil$train,] 

Now the mblControl and the mbl functions can be used to perform the local modeling and prediction process. In 

this example we will customize these functions to reproduce the LOCAL (Shenk et al., 1998) and the spectrum 

based-learner (sbl, Ramirez-Lopez et al., 2013a) algorithms. The correlation dissimilarity method which is used 

in LOCAL for nearest neighbor selection can be defined through the sm argument of the mblControl function. 

The validation method can be also specified through  mblControl. In this case, the cross-validation method used 

is the nearest neighbor validation (NNv, Ramirez-Lopez et al., 2013a): 
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local.ctrl <- mblControl(sm = "cor", valMethod = "NNv") 

Once the control object is defined, we can proceed with the modeling and prediction steps. In this case,  we will 

test a sequence of ten different neighbours (from 60 to 150 in steps of 10) that we want to test for predicting the 

Ciso values of the unknown samples. In LOCAL the local models are fitted by using a weighted average partial 

least squares algorithm (wapls). This regression method uses multiple models generated by multiple PLS 

components (i.e. between a minimum and a maximum number of PLS components). For each local regression the 

final predicted value is a weighted average of all the predicted values generated by the multiple PLS models. In 

the mbl function, this specific regression algorithm is named "wapls1" and can be specified thorougth the method 

argument. The maximum and minimum number of PLS components must be defined in the pls.c argument (for 

this example we use the 9 and 25 as the minimum and maximum number of components). 
eval.neighbours <- seq(60, 150, by = 10) 
local <- mbl(Yr = Y.train, Xr = X.train,  
Xu = X.unknown,  
             mblCtrl = local.ctrl, 
             dissUsage = "none", 
             k = eval.neighbours, 
             method = "wapls1", 
             pls.c = c(9, 25)) 
plot(local, g = "validation", main = "LOCAL") 

From the above results we conclude that the optimal number of neighbors is 80 (Fig. 2). Now the predictions of 

Ciso can be accessed by using the getPredictions function. The predicted values can be compared against the 

actual Ciso values and cross-validation statistics can be computed: 

 

 

 

 

 

 

Figure 2. Results of the nearest-neighbor cross-validation for the two examples presented here. These graphs can 

be obtained by applying the plot function on the obtained mbl object. They can be used to select an adequate 

number of neighbors. Left: results for the LOCAL algorithm, Right: results for the sbl algorithm. 

predicted.local <- getPredictions(local)$Nearest_neighbours_80 
rmse.local <- sqrt(mean((Y.unknown - predicted.local)^2)) 
R2.local <- cor(Y.unknown, predicted.local)^2 

Similar to the above code example for LOCAL, the functions can be customized to reproduce the sbl algorithm. 

In this case, a PC dissimilarity is used with an optimized PC selection method. The algorithm used to fit the local 

models is the gaussian process regression (gpr) and the local distance matrices are used as a source of additional 

predictors in addition to the spectral variables. The code for performing sbl predictions is as follows: 

sbl.ctrl <- mblControl(sm = "pc", pcSelection = list("opc", 40), valMethod = "NNv") 
sbl <- mbl(Yr = Y.train, Xr = X.train, Xu = X.unknown, 
           mblCtrl = sbl.ctrl, 
           dissUsage = "predictors", 
           k = eval.neighbours, 
           method = "gpr") 
plot(sbl, g = "validation", main = "sbl") 

predicted.sbl <- getPredictions(sbl)$Nearest_neighbours_150 
R2.sbl <- cor(Y.unknown, predicted.sbl)^2 
rmse.sbl <- sqrt(mean((Y.unknown - predicted.sbl)^2)) 



Papers 

Pedometron No. 34, April 2014                                                                                                                                     14 

References 

Eaton, J. W. 2012. GNU Octave and reproducible research. Journal of Process Control, 22(8), 1433-1438. 

Fernandez Pierna, J.A., Dardenne, P. 2008. Soil parameter quantification by NIRS as a Chemometric challenge at 

‘Chimiométrie 2006’. Chemometrics and Intelligent Laboratory Systems 91, 94–98. 

Genot, V., Colinet, G., Bock, L., Vanvyve, D., Reusen, Y.,  Dardenne, P. 2011. Near infrared reflectance 

spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility. Journal of Near 

Infrared Spectroscopy, 19(2), 117. 

Honigs, D. E., Hieftje, G. M., Mark, H. L., Hirschfeld, T. B. 1985. Unique-sample selection via near-infrared 

spectral subtraction. Analytical Chemistry, 57(12), 2299-2303. 

Ince, D. C., Hatton, L., Graham-Cumming, J. 2012. The case for open computer programs. Nature, 482(7386), 

485-488. 

Kennard, R. W., Stone, L. A. 1969. Computer aided design of experiments. Technometrics, 11(1), 137-148. 

Tormod, N., Tomas, I., Fearn, T.,  Tony, D. 2002. A user-friendly guide to multivariate calibration and 

classification. NIR, Chichester. 

Puchwein, G. 1988. Selection of calibration samples for near-infrared spectrometry by factor analysis of spectra. 

Analytical Chemistry, 60(6), 569-573. 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Rossel, R. A., Demattê, J. A. M., Scholten, T. 2013b. Distance and 

similarity-search metrics for use with soil vis–NIR spectra. Geoderma, 199, 43-53. 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Demattê, J. A. M.,  Scholten, T. 2013a. The spectrum-

based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma, 195, 

268-279. 

rstats.com. “The Popularity of Data Analysis Software.” r4stats.com. Accessed March 09, 2014. 

http://r4stats.com/articles/popularity/  

Shenk, J. S., Westerhaus, M. O. 1991. Population definition, sample selection, and calibration procedures for near 

infrared reflectance spectroscopy. Crop science, 31(2), 469-474. 

Shenk, J. S., Westerhaus, M. O., Berzaghi, P. 1998. Investigation of a LOCAL calibration procedure for near 

infrared instruments. Journal of Near Infrared Spectroscopy, 5(4), 223-232. 

Snee, R. D. 1977. Validation of regression models: methods and examples. Technometrics, 19(4), 415-428. 
 
 



Papers 

Pedometricians can and should make more use of Expert Information 

Pedometron No. 34, April 2014                                                                                                                                     15 

Gerard Heuvelink1 

1Soil Geography and Landscape Group, Wageningen University,Wageningen, Netherlands. 

 
On June 30, 13:30 hours, Phuong Truong from Wageningen University will (likely) defend her PhD-thesis 

“Expert knowledge in geostatistical inference and prediction”. The aula of the university easily seats 500 people, 

so why don’t all pedometricians from around the world come and witness this event? Please consider yourself 

invited! You will need to make your own travel arrangements and unfortunately we cannot support you 

financially, but surely that will not stop you from making this exciting trip. Wageningen in June is even more 

‘gezellig’ than usual and a very nice place to be. On top of that, you will learn about how pedometricians can 

make more use of expert knowledge in geostatistical modelling and prediction. 

Now if for some reason you won’t be able to make it, let me briefly explain what Phuong did over the past four 

years. She worked on four main topics, and I describe all four below. If you are interested you can also send an 

email to Phuong (phuong.truong@wur.nl) or me (gerard.heuvelink@wur.nl) so that we can send you a digital 

copy of her thesis. 

1. Web-based tool for expert elicitation of the variogram  

We all know that the variogram is the keystone of geostatistics and a prerequisite for kriging. We also know that 

quite a few observations are needed to estimate the variogram reliably. Dick Webster and Margaret Oliver write 

in their book that a minimum of about 200 observations are required, and perhaps this number can be reduced if 

we replace Matheron’s Method of Moments estimator by (Restricted) Maximum Likelihood estimation, but still 

there will be many practical cases where there simply are not enough observations to estimate the variogram from 

only point observations. Alex, Budi and Brendan (surnames not needed) contributed a very interesting item to 

Pedometron 32, in which they describe a method to guess the variogram. Phuong basically did the same, but 

rather than guessing, she used a formal statistical expert elicitation approach. As it happens, this is a research field 

in its own right, and we can learn a lot from the expert elicitation research community. Formal expert elicitation 

provides a sound scientific basis to reliably and consistently extract knowledge from experts. Phuong developed 

an elicitation protocol for the variogram of an environmental variable and implemented it as a web-based tool. 

The protocol has two main rounds: elicitation of the marginal probability distribution and elicitation of the 

variogram. The first round extracts from experts quantiles of the marginal probability distribution by asking 

questions such as “Which is the lowest possible value of Z?” and “”What is the value Zmed such that there is a 

50% probability that the value of Z is less than or equal to this value?”. Of course, experts have first been 

prepared for their task using a briefing document that explains probabilistic terms and aims to avoid various types 

of judgement bias. The second round faces the problem of extracting the variogram from experts without 

geostatistical background. How to do this? The approach used by Phuong is to elicit the experts’ judgement about 

the amount of variation that can be expected at various spatial lags. This involves questions such as: “Could you 

specify a value T such that there is a 50% probability that the spatial increment is less than or equal to this value 

for each of the following distances?”. Here, it was first explained to experts what ‘spatial increment’ means: it is 

the absolute value of the difference between the values of Z at two locations separated by the given distance. That 

is easy, don’t you agree? Once all experts had completed the elicitation task (in the case study Phuong used five 

experts), their judgements had to be pooled. For this, Phuong used ‘mathematical  aggregation’, which basically 

boils down to taking a weighed average. The alternative is ‘behavioural aggregation’, which may be interpreted as 

locking up all experts together in a room and not letting them out until they agree. Since a PhD must be completed 

in a reasonable amount of time, Phuong chose mathematical aggregation. 

2. Uncertainty quantification of soil property maps with statistical expert elicitation 

This part of Phuong’s research applied the tool developed in the first part to elicit from experts the accuracy in a 

given, deterministic soil property map. We all know that soil property maps are not perfect, and that it is 

important to know how close they are to reality to be able to tell for which purposes we can use them and for 

which not. Now we also know that it is not enough to characterise the uncertainty associated with a soil property 

map by that single, ‘magical’ number, known as the Root Mean Squared Error. To fully characterise the 

uncertainty, we need to know more, among others the variogram of the map error. It can be derived from a 

sufficiently large number of point observations of the error in the map, but what if there are no observations?  
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Surprise, surprise: ask the expert! And so this is what Phuong did, using a NATMAP map of the volumetric soil 

water content at field capacity (%) of the East Anglia Chalk area as a case.  Six experts were asked to elicit the 

marginal distribution and the variogram of the error in the map. This was more difficult than the elicitation in the 

first study, because ‘error’ is less tangible than a real environmental variable, such as ‘temperature’ or ‘clay 

content’. Experts had quite different opinions about the magnitude of the uncertainty in the soil property, their 

interquartile ranges varied between 4 and 30%. It was also odd that two out of six experts judged the median of 

the error bigger than zero. This effectively meant that they reasoned that the NATMAP was positively biased, 

because the error was defined as the true value minus the mapped value. The elicited nugget-to-sill ratios were 

small and fairly similar for five out of six experts, but one expert was of the opinion that the nugget was 90% of 

the sill. This was the only Dutch expert (all others were British), it may reveal the ‘noisy’ character of Dutch soil 

scientists, but as yet this is only a hypothesis that needs further research. 

Figure 1. Starting page of the web-based variogram elicitation tool. 

Figure 2. Variogram models fitted to expert judgements and pooled variogram. 
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3. Bayesian area-to-point kriging using expert knowledge as informative priors 

The third part of Phuong’s research focused on elicitation of the nugget variance and was done in the context of 

area-to-point kriging. This is a recently developed technique (among others work by Phaedon Kyriakidis, Carol 

Gotway, Pierre Goovaerts), that was introduced to soil science by Ruth Kerry and co-workers in a 2012 

Geoderma paper. In area-to-point kriging we do the opposite of block kriging: we predict at points from 

observations at blocks. Most relevant applications are in remote sensing and climatology, where the output of 

Global Circulation Models may need to be scaled down to smaller geographical units. Area-to-point kriging 

works very fine (albeit slow), but the problem is that in order to apply it, one needs to point support variogram. 

There are people (PG even wrote code that can do the job) who claim that the point support variogram can be 

derived from block support data, but this is not true. The point support nugget cannot be inferred because the 

micro-scale variability cancels out when block averaging is done, and so one can never tell from block support 

observations how large the micro-scale variability was. So, what to do? Phuong proposed, and this will be no 

surprise, to use expert elicitation. In this case, the block support data also provide information (notably about the 

variogram sill and range), which was included by taking a Bayesian approach. The expert-elicited variogram was 

taken as a prior, and next a posterior was calculated by multiplying the prior with the likelihood of the block 

observations. The results nicely show that the block data provide no information about the nugget, because the 

prior and posterior of the nugget parameter were nearly identical. However, block data could reduce the prior 

uncertainty about the range and sill. All this was applied to downscaling MODIS temperature air data, but there 

should be interesting soil applications too, such as downscaling of remotely sensed base soil moisture data.  

Figure 3. MODIS block conditioning data (left) and downscaled point predictions right) of air temperature. 

4. Incorporating expert knowledge as observations in mapping biological soil quality indicators with 

regression cokriging  

The fourth and final part of Phuong’s thesis addresses the use of experts to generate new data. This is not a new 

idea, for instance Henning Omre already published a paper on merging observations and qualified guesses in 

kriging in 1987. Phuong used formal expert elicitation techniques as before, and used the expert-generated data 

not only in kriging but also for variogram estimation. The difficulty of course is in the fact that expert data are not 

the same as real data and that a naive merge would rather deteriorate results than improve them. Expert 

judgements can have large errors and so these should be treated as ‘soft’ data. Moreover, experts tend to ‘smooth’ 

reality, which affects the spatial correlation structure. Phuong came up with a model that takes all this into 

account, and applied it to mapping nematode indices for a Dutch nature area. In this case she used just one expert, 

and as it happens this expert was quite uncertain about the nematode index in the area, and so the added value of 

the expert information was only marginal. 

So what did we learn from Phuong’s research? It showed that expert information can be very useful in 

geostatistical and pedometric research, and that it should be done using formal expert elicitation procedures. But 

of course there is much more than that. If you want to know the rest, you will simply have to come to 

Wageningen on June 30. If you do, I will buy you a drink, that’s for certain! 
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1. Introduction 

In the 1960s the Soil Survey Institute of The Netherlands started the national soil survey at scale 1:50,000. In 

1995 the last sheet of the map was published. The age of the map therefore varies from 20 to more than 40 years. 

According to this soil map more than half a million of ha of soils contain peat within 40 cm of the surface. These 

soils are mapped as peaty soils (thickness of peat < 40 cm) or as peat soils (thickness peat > 40 cm). Since the soil 

survey, part of the peat has disappeared through oxidation and ploughing. As a consequence peat soils may have 

changed into peaty soils, and peaty soils in to mineral soils. A reconnaissance survey in the eastern part of the 

Netherlands showed that the acreage of peat soils was reduced by about 50%. This clearly showed the need for an 

updated soil map. Actual information on the thickness of peat layers is of great importance for the evaluation of 

many soil functions such as agricultural production, carbon stock inventories and modelling studies on nutrient 

leaching. 

For updating the soil map six soil-geographical subareas were distinguished. Until now the soil map has been 

updated in the two northernmost subareas, the northern till plateau of the provinces of Drenthe and Friesland 

(subarea 1), and the Fen peat soils in the transition zone of the till plateau to the marine clay soils in the west and 

north (subarea 2). These two areas cover 188,000 ha (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Methodology 

Figure 2 shows the various steps of the procedure used for mapping the actual peat thickness. We will describe 

the steps now shortly. 

2.1. Constructing maps with covariates 

The first step is the construction of maps with environmental covariates that are possibly related to the actual peat 

thickness. The covariate layers have been derived from a variety of data sources. Layers with information about 

peat type, peat thickness class, topsoil type, and sensitivity to oxidation were derived from the current 1:50 000 

Figure 1. Peat areas in the north of the Netherlands. 
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soil map. Seven groundwater table layers were used that indicate overall, summer and winter drainage conditions. 

Eleven relative elevation layers (5 continuous, 6 categorical) were derived from the 25-m resolution national 

DEM. Nine land cover layers were derived from the 25-m resolution national land use inventory. This inventory 

was simplified and reclassified into layers with different combinations of land cover classes. Eight layers 

representing historic land cover were derived from land cover maps from 1940, 1960, 1970, 1980 and 1990. 

Finally, these five historic land cover maps were used to estimate land reclamation age (conversion from nature to 

agricultural land), which resulted in seven layers with different combinations of reclamation age classes. 

2.2. Collecting additional point data 

The next step is the collection of additional soil profile descriptions at point locations. In subarea 1 one sampling 

location per 150 ha was selected. In subarea 2 the sampling density is one per 75 ha or, in the part of this subarea 

with thick peat soils, one per 50 ha. These additional locations were selected by spatial coverage sampling 

(Walvoort et al., 2010). 

2.3. Updating peat thickness in legacy soil profile data 

The thickness of peat layers in the soil profiles stored in the Soil Information System were updated with the 

model described by (Kempen et al., 2012): 

 

with        the thickness t years after the soil profile i was described,          the original peat thickness in soil profile 

i , pi the proportion of the peat thickness in soil profile i remaining after one year, and t the time in years elapsed 

since the soil profile description. t equals 2011 (subarea 1) or 2012 (subarea 2) minus the year in which the soil 

profile was described. (Kempen et al., 2012) modelled the proportionality constant p by a non-spatial generalized 

linear model (GLM) with a logit link function, accounting for over- or under-dispersion: 
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(Kempen et al., 2012) found no relation between                 and 

environmental covariates x. We used the values of                as 

reported by (Kempen et al., 2012) to simulate 10,000 values for 

pi , using a beta(a,b) distribution. These simulated values were 

subsequently used to compute 10,000 updated peat thicknesses 

per legacy soil profile. These updated peat thickness were log-

transformed, and the mean and variance of these log-

transformed updated peat thicknesses were computed. The 

variance of the simulated peat thicknesses reflects our 

uncertainty about the actual peat thickness. This uncertainty 

was accounted for in spatial prediction of the peat thickness 

(see hereafter). Note that the larger t, the larger the variance of 

the simulated peat thicknesses, the smaller the weight attached 

to these data in spatial prediction. 

2.4. Selection and calibration of a model for 

presence/absence of peat 

Especially in subarea 1, a considerable proportion of the soil 

profiles contained no peat (peat thickness of 0 cm). Such zero-

inflated distributions can be modelled by a mixture of two 

distributions, a Bernoulli distribution for the presene/absence of 

peat and a conditional distribution for the thickness of peat, 

conditional on the presence of peat. In building this model, also 

the legacy soil profile data with updated peat thicknesses were 

used in addition to the newly collected data. For these legacy 

)( ilogit
2ˆ and ˆ

Figure 2. Steps in updating the soil map of 

peat thickness. 
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soil profile data a threshold value of 1 cm for the updated peat thickness was used: if the updated peat thickness 

(average of 10,000 simulated values) in a soil profile was less than 1 cm, then the peat indicator value for this soil 

profile was 0 (peat absent). 

The presence/absence of peat was modelled by a non-spatial GLM model with a logit link function. The best 

model, i.e. the best combination of covariates, was selected on the basis of Akaike's Information Criterion (AIC). 

The most important covariate was the peat thickness in three classes as derived from the existing (not updated) 

soil map. Other selected covariates were, amongst others, groundwater table depth, relative elevation, reclamation 

period, and (historic) land use. Model residuals showed only very weak spatial correlation: in area 1 the relative 

nugget was very large, in area 2 the experimental variogram  fluctuated around a horizontal line (see Figure 3). 

Figure 3. Experimental variogram of residuals of GLM for peat indicator in subarea 2. 

2.5. Prediction of peat presence/absence and simulation of indicators 

The calibrated GLM model was then used to predict the probability of peat presence at the nodes of a 50 *50 m 

grid. Notice that the probabilities as predicted by the GLM are automatically in the interval (0, 1). Next, at each 

grid node 1000 peat indicator values were simulated from a Bernoulli distribution, with the predicted probability 

as the “probability of success”. The indicators at the grid nodes were simulated independently from each other, 

i.e. spatial correlation was not accounted for (no geostatistical simulation). Geostatistical simulation is not needed 

when results are not aggregated. 

2.6. Selection and calibration of a model for conditional peat thickness 

The next step was the modelling of the thickness of peat conditional on the presence of peat. So for building this 

model only soil profiles with peat were used. The updated peat thicknesses were log-transformed, so that the 

distribution became less skewed. The spatial distribution of these log-transformed peat thicknesses was modelled 

by a linear mixed model, i.e. the sum of a linear combination of covariates (linear trend) and a spatially correlated 

residual. The best trend model was selected using AIC, assuming uncorrelated residuals. The linear mixed model 

was then calibrated by iterative Generalized Least Squares. 

2.7. Prediction and simulation of conditional peat thickness 

The calibrated linear mixed model was then used to predict the conditional peat thickness at the nodes of the 

prediction grid. In geostatistical literature this is referred to as kriging with an external drift. The uncertainty 

about the updated peat thickness in the observed soil profiles was accounted for in kriging, by adding the variance 

of the 10,000 simulated peat thicknesses, see section 2.3, to the diagonal of the covariance matrix of the data used 
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in kriging. The predicted log-transformed peat thickness and its prediction variance were then used to simulate 

1000 values per node, assuming a normal distribution. These simulated values were then back-transformed by 

exponentiation. 

2.8. Prediction of peat thickness and peat thickness class 

For each grid node 1000 unconditional peat thicknesses were obtained by element-wise multiplication of the 

vectors with simulated indicators and conditional peat thicknesses. Next, the mean, median 5-percentile and 95-

percentile of the resulting values were computed. Besides, the frequencies of three peat thickness classes, < 5 cm, 

5 - 40 cm, and > 40 cm were computed. The thickness class with the largest probability was used as the predicted 

peat thickness class. 

2.9. Validation 

Predictions were validated by a probability sample not used in mapping (Brus et al., 2011). The probability 

sample was selected by stratified random sampling, using the predicted peat thickness for stratification. Within 

each stratum several blocks of 50*50 m were selected, and within these selected blocks several point locations 

(stratified two-stage random sampling). 

3. Result 

Figure 4 shows the predicted actual peat thickness for subarea 2. The square root of the mean and median squared 

errors of the predicted peat thickness at block-support for subarea 2 were 51 cm and 18 cm, respectively. The 

correlation between predicted peat thickness and observed peat thickness was 0.77. The overall purity of the three 

peat thickness classes was 72%. 

 

Figure 4. Predicted actual thickness of peat layer in subarea 2. 
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