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This paper presents amethodology for assessingmineral abundances ofmixtures havingmore than two constit-
uents using absorption features in the 2.1–2.4 μmwavelength region. In the first step, the absorption behaviour
of mineral mixtures is parameterised by exponential Gaussian optimisation. Next, mineral abundances are pre-
dicted by regression tree analysis using these parameters as inputs. The approach is demonstrated on a range of
prepared samples with known abundances of kaolinite, dioctahedral mica, smectite, calcite and quartz and on a
set of field samples from Morocco. The latter contained varying quantities of other minerals, some of which did
not have diagnostic absorption features in the 2.1–2.4 μm region. Cross validation showed that the prepared
samples of kaolinite, dioctahedral mica, smectite and calcite were predicted with a root mean square error
(RMSE) less than 9 wt.%. For the field samples, the RMSE was less than 8 wt.% for calcite, dioctahedral mica
and kaolinite abundances. Smectite could not be well predicted, which was attributed to spectral variation of
the cations within the dioctahedral layered smectites. Substitution of part of the quartz by chlorite at the predic-
tion phase hardly affected the accuracy of the predictedmineral content; this suggests that the method is robust
in handling the omission of minerals during the training phase. The degree of expression of absorption compo-
nents was different between the field sample and the laboratory mixtures. This demonstrates that the method
should be calibrated and trained on local samples. Our method allows the simultaneous quantification of more
than twominerals within a complexmixture and thereby enhances the perspectives of spectral analysis formin-
eral abundances.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Soil mineralogy is an important indicator for soil formation and par-
entmaterial characterisation. Among otherminerals in soils like quartz,
feldspars and carbonate minerals, clayminerals are themain secondary
phases formed by theweathering of the parentmaterial. The abundance
of different clayminerals and their structural features becomeuseful in-
dicators in defining the evolutional stage of a soil (Egli et al., 2008; Hong
et al., 2007; Mavris et al., 2011; Sedov et al., 2003). In environmental
and geological studies, the characterisation (and quantification) of soil
mineralogy is typically achieved using X-ray diffraction (XRD). XRD is
broadly acknowledged as the essential tool for mineral determination
of mono- or multi-mineral mixtures (Bish and Plötze, 2011; Gomez et
al., 2008;Mulder et al., 2011; Omotoso et al., 2006). The basic limitation
of XRD is that the analysis must be carried out indoors, basically due to
31 317419000.
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sample preparation requirements and specific laboratory treatments
necessary for some clay minerals, such as glycolation and heating after
various cation saturations. Visible Near Infrared and Shortwave Infrared
(VNIR/SWIR) spectroscopy has proven to be an efficient method for the
determination of various soil properties since measurements can be
done with little effort and in situ (Ben-Dor et al., 2009; Viscarra Rossel
et al., 2006). In this paper, we propose and demonstrate its use for
simultaneous quantification of mineral abundances from complex
mixtures.

Someminerals such as quartz, and low iron feldspars do not showab-
sorption features in the 0.350–2.500 μmwavelength range except for the
features arising fromFe2+/3+ related to theirweathering products (Clark
et al., 1990). Detection of minerals having absorption features within the
0.350–2.500 μm range have been successfully obtained using linear
spectral unmixing techniques (Dennison and Roberts, 2003). However,
these analyses were limited to estimating the main component within
a sample having the most distinct absorption feature (Mulder et al.,
2012b). Linear mixing behaviour of spectra, however, is highly unlikely

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2013.05.011&domain=pdf
http://dx.doi.org/10.1016/j.geoderma.2013.05.011
mailto:Titia.Mulder@wur.nl
http://dx.doi.org/10.1016/j.geoderma.2013.05.011
http://www.sciencedirect.com/science/journal/00167061


280 V.L. Mulder et al. / Geoderma 207–208 (2013) 279–290
in soils because the mineral constituents are typically in intimate associ-
ation with one another. Influencing factors are e.g. the opaqueness of
minerals and coating by other minerals. Furthermore, simultaneous re-
trieval of multiple mineral abundances from reflectance spectra in the
0.350–2.500 μm region is affected by the co-occurrence of absorption
features at similarwavelengths arising fromovertones and combinations
of the fundamental absorptions of OH, H2O and CO3 which occur at
wavelengths greater than 2.500 μm, nonlinear mixing (or scattering)
phenomena (Singer, 1981; Sunshine et al., 1990), and measurement
noise (Stenberg et al., 2010). Hence, reflectance spectra of mixtures are
typically a complex result from the combinations of the spectral charac-
teristics of the constituents (Clark et al., 1990), as illustrated in Fig. 1. A
comparison of the diagnostic features of pure calcite with the continuum
removed reflectance (Clark, 1998) of samples containing an spectrally
dominant mineral shows that e.g. in the presence of quartz the double
absorption feature near 2.300–2.350 μmis present butmuch less distinct
while it is absent in mineral mixtures of calcite with kaolinite or
dioctahedral mica at approximately 15% abundance. Note also that the
absorption near 2.150 μm is absent in the smectite and dioctahedral
mica mixtures while it changes the typical absorption of kaolinite.
Depending on the composition, the abundance and the spatial arrange-
ment of the minerals, the total reflectance resulting from the scattering
of the minerals within the intimate mixture produces positional shifts,
changes in intensity, disappearance of absorption features or changes
in their shape.

Methods aiming to match diagnostic absorption features with spec-
tra from a large spectral library include the Tetracorder (Clark et al.,
2003) and the CRISM Analysis Tool (CAT) (Flahaut et al., 2012). While
the extended library enables application to unknown areas without
the need of calibration on local samples, the retrieval of the mineral
composition of complex mixtures remains limited because spectral
mixing effects may yield diagnostic features not distinct enough to be
matched to minerals in the spectral library. Theoretically the spectra
could be matched to the corresponding spectra with known abun-
dances in the library. However the spectra to be included in the library
of various minerals and the possible variation in mixtures of these
would follow combinatory logic (Mulder et al., 2012b). So, the methods
are commonly applied to characterising mineral composition in terms
of presence or absence but not quantifying mineral abundances (Clark
et al., 2003). Non-linear models, such as the single scattering albedo
model of Hapke (Hapke, 2002; Warell and Davidsson, 2010) have
been successful in predicting the abundances of minerals in intimate
mixtures. Themain reasonwhy such a nonlinear approach is notwidely
adopted is the amount of detailed information on the scattering proper-
ties of all endmembers needed to perform the calculations (Keshava
and Mustard, 2002). Alternatively, the modelling of reflectance and
the inference of absorption components within complex features can
be done by fitting Gaussian curves or modified Gaussian curves to the
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Fig. 1. Continuum removed reflectance of calcite and mixtures containing calcite. The
mixtures contain minerals of which the additional mineral with absorption features has
an abundance of approximately 15% and a sample of calcitewith 25% quartz (spectra orig-
inate from field samples measured in this experiment, the calcite spectra contain a small
trace of mica).
absorption features and absorption components in reflectance spectra
of minerals also referred to as spectral deconvolution (Burns, 1993;
Noble et al., 2006; Roush and Singer, 1986; Singer, 1981). Sunshine
et al. (1990) provided the explanation for Gaussian behaviour of ab-
sorption features. The signal sensed by a spectrometer corresponds to
the mean response frommassive amounts of electronic and vibrational
processes that cause absorption around specific wavelengths (absorp-
tion bands). Owing to the Central Limit Theorem, an absorption feature
closely resembles a Gaussiandistribution. Alternatively, the exponential
Gaussian optimisation (EGO) of Pompilio et al. (2009) has been
designed to model absorption components which are not Gaussian in
shape and accounts for saturation and asymmetry effects. The use of
such a quantitative deconvolution method for a spectrum of a specific
composition is dependent only on the spectra and absorption of themin-
erals themselves rather than the detailed information on the scattering
properties required for the Hapke model (Shepard and Helfenstein,
2007). It provides the means to study the individual absorption compo-
nents in spectra and interpretation of these can then be analysed in
terms of composition (Sunshine et al., 1990).

Modified Gaussian models have been demonstrated in laboratory
experiments by mixtures with two constituents of interest using either
multiple linear regression techniques (Bishop et al., 2011; Singer, 1981)
or the ratio between intensities of absorption components (Kanner et
al., 2007; Sunshine and Pieters, 1993). It has thus been assumed that
the model parameters vary as a linear function of the relative propor-
tions of the constituents in the mixture (Pompilio et al., 2009;
Sunshine and Pieters, 1998). Samples with similar mineralogy but un-
known abundance can then be predicted by the calibrated mixtures
models. However, such approach is insufficient for the prediction of
mixtures with more than two minerals. Model parameters might vary
linearly over a short range of themixture possibilities but over the com-
plete range ofmixture possibilities, non-linearity dominates. As a result,
a different type of analysis is required to relate the EGO parameters to
the mineral content in order to determine abundances of three or
more minerals within a mixture. We propose a recursive partitioning
of the data by regression tree analysis (Breiman et al., 1984). Regression
tree analysis allows to deal with nonlinearity and interactions between
the EGO parameters. Regression trees can be trained by setting decision
rules based on the predictive structure of the dataset with mineral mix-
tures (Breiman et al., 1984). This approach is an often used datamining
technique in several disciplines (De'Ath and Fabricius, 2000;McBratney
et al., 2003; Yang et al., 2003).

Below we give details on combining the deconvolution by EGO and
the use of regression trees on the EGO parameter values for quantifying
mineral abundances of mixtures having more than two constituents.
The approach is demonstrated on a range of prepared samples with
known abundances of kaolinite, dioctahedral mica, smectite, calcite
and quartz and on a set of field samples from Morocco, which were
quantitatively analysed by XRD analysis.

2. Methods

2.1. Spectral deconvolution byGaussianmodelling of absorption components

Deconvolution of the spectra by fitting Gaussian curves needs to be
concerned with partly overlapping absorption components (Sunshine
and Pieters, 1993) as well as the presence of amorphous materials and
impurities that may modify absorption band shapes and contribute to
saturation and asymmetry of spectral features (Burns, 1993; Pompilio
et al., 2009). TheModifiedGaussianModel (MGM)describes absorption
components as modified Gaussian distributions that are parameterised
by a band centre, band width (full width at half maximum) and band
strength (amplitude intensity), for more details see Sunshine et al.
(1990) and Kanner et al. (2007). In several studies MGM has been suc-
cessfully used tomodel overlapping absorptions components (Bishop et
al., 2011; Kanner et al., 2007; Lane et al., 2011; Ogawa et al., 2011; Pinet
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et al., 2007; Sunshine and Pieters, 1993, 1998). Becausewe haveminer-
al mixes with many constituents, the absorption components may be
modified in shape due to saturation and asymmetry effects. It is impor-
tant to include a parameter on saturation. When saturation occurs the
absorption band is reduced in depth and becomes flatter near the min-
imum. Without information on saturation the spectral deconvolution
might be less accurate because it cannot discriminate between
overlapping and saturated absorption bands (Pompilio et al., 2009).
Therefore, the deconvolution of the spectra will be performed with
the exponential Gaussian optimisation (EGO) of Pompilio et al. (2009)
to model those absorption components which are not Gaussian in
shape and account for saturation and asymmetry effects.

The EGO algorithm of Pompilio et al. (2009, 2010) first fits a con-
tinuum linear in wavelength over the isolated absorption feature and
secondly fits the feature's individual absorption components by a
number of EGO profiles in log reflectance. These are then combined
into the final fitted curve of an isolated feature. The continuum over
the isolated feature is set according to Eq. (1):

C λð Þ ¼ c0 þ c1λ
−1 ð1Þ

where c0 is the offset and c1 a constant for the slope of the continuum
and λ is the wavelength (Sunshine et al., 1990). In wavelength space,
the continuum becomes a flat line in infrared and a curved line at
shorter wavelengths (Clénet et al., 2011). Then, for each absorption
component an EGO profile is described, using the five parameters posi-
tion, intensity, width, band saturation and asymmetry (Eq. (2)):
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where λ represents the wavelength in micrometres [μm], s the band
amplitude intensity, μ the centre and σ the full width at half maximum
(FWHM) of the EGO profile. The parameter t is used tomodel band sat-
uration, and k is the coefficient for asymmetry.

The complete model algorithm is described by the fitted continuum
C(λ) and the sum of the different EGO profiles superimposed onto the
continuum (Eq. (3)):

ln R λð Þð Þ ¼ C λð Þ þ∑EGO λð Þ ð3Þ

where R is the reflectance spectrum as a function of the wavelength,
C(λ) indicates the continuum as a function of wavelength and EGO
(λ) are the individual profiles fitted to each absorption feature again
as a function of wavelength. Log transformed reflectance is used since
absorption is assumedhaving a logarithmic dependencebetween trans-
missivity of light through a substance and the product of the path length
and the absorption coefficient of the substance (Beer–Lambert law)
(Sassaroli and Fantini, 2004). The appropriate number of absorption
components to be used in the EGO analysis depends on the number of
known minerals present in the material mixture and the number of
unique electronic and vibrational absorptions for each mineral
(Kanner et al., 2007). For a graphical demonstration of the EGO algo-
rithm we refer to the work of Pompilio et al. (2009, 2010).

We used a similar approach as Pompilio et al. (2009, 2010) to evalu-
ate the deconvolution of the spectra. So called best fit models were
assessed using the rootmean squared error (RMSE) of the estimated nat-
ural log of reflectance. Based on visual interpretation, additional EGO
profiles were included at subsequent iterations when the current set of
profiles did not achieve a proper fit in specific wavelength ranges.
These EGO profiles were centred around the position (μm) of the select-
ed absorption components, as discussed in Section 2.3.1. A best fit of the
estimated natural log reflectance results fromnegligible improvement of
the corresponding RMSE with subsequent iterations. For a complete de-
scription of the statisticswe refer to Appendix A in Pompilio et al. (2009).

The EGO routine was implemented within the R-environment by
Pompilio et al. (2009), (R Development Core Team, 2011). The ap-
proximation of the parameters is obtained by optimisation of the pa-
rameters in the model aiming for the least RMSE using a Levenberg–
Marquardt approach (Garbow et al., 1980; Moré, 1978; Press et al.,
1992, and references therein).

2.2. Determination of mineralogical composition by regression trees

Regression tree analysis (RTA) is a flexible method for specifying
the conditional distribution of a variable y, given a vector of predictor
variables X (Breiman et al., 1984). The goal of the regression tree is to
create relatively homogeneous subsets. This is done by recursively
partitioning the data in binary splits based on a single predictor vari-
able. The partition is determined by splitting rules, evaluating the
best split at each internal node with respect to homogeneity of the
two subsets. Each observation is ultimately assigned to a unique ter-
minal node based on the splitting rules set for each node in the tree
(Breiman et al., 1984).

In this work, mineral abundance was predicted by coupling RTA
with the EGO results whereby a separate regression tree was trained
for the individual minerals. In the first instance, a maximum tree was
grown to the point where additional splits could not be made due to
lack of data, using the EGO profile parameters for the corresponding
mineral as the predictor variables. Subsequently, the least important
splits were removed by pruning the tree based upon the standard
error of the estimate from cross-validation. The optimal tree was de-
rived by using the so called 1 SE rule, introduced by Breiman et al.
(1984). By this rule we select the simplest tree where the error esti-
mate is within one standard error of the lowest error of the estimate.
Thereby we reduce the instability of the model and also the number
of parameters used for the prediction model. In addition, the stopping
rules used for training of the trees included (Breiman et al., 1984); the
minimum number of observations that must exist in a node in order
to be considered for a split were set to 3 for the laboratory experi-
ment and to 5 for the field experiment; a split was accepted if the
overall coefficient of determination (R2) of leave-one-out cross vali-
dation increased at each step by at least 0.01.

An additional validation was done to test the model performance
with a number of samples which were not included for training of
the trees. By setting aside 16 randomly selected samples from the
field experiment (total 77 samples), training of the trees was based
on the remaining samples. The accuracy of the predicted mineralogy
from the cross validation and the external validation was assessed
by the coefficient of determination (R2) from the cart analysis and
the root mean square error (RMSE) of the predicted mineral abun-
dances compared to the known mineralogy. Calculations were
performed using the “R language and environment for statistical com-
puting” version 2.14.1 (R Development Core Team, 2011) and the
contributed package rpart (Ripley, 2011). For more details about
RTA we refer to Breiman et al. (1984).

2.3. Case studies

2.3.1. Laboratory experiment

2.3.1.1. Mineral samples. The laboratory experiment was conducted on
spectra of physical mixtures of almost pure minerals. The minerals in-
cluded in the mixtures were kaolinite, dioctahedral mica (illite),
smectite, calcite and quartz, those found to be dominantly present
in the study area (see Section 2.3.2). Since quartz was ubiquitous in
the study area a fixed amount of quartz was added to each sample.
Quartz is known to lack absorption features in the studied wave-
length range. Nevertheless, inclusion of quartz in physical mixtures
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Fig. 2. Continuum removed spectra from the pure minerals in this study, right: full VNIR/SWIR, left: between 2.1 and 2.4 μm (spectra originate from samples measured in this
experiment).
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is important because of potential secondary impact, from scattering of
light by quartz, on the absorption features of other minerals (Clark,
1999); however, in this study the direct estimation of quartz abun-
dance using EGO and regression tree analysis is not supported be-
cause of absence of absorption features (see also Fig. 2). The
minerals were obtained either from Clay Minerals Society (CMS)
source clay repository (kaolinite KGa-2 Georgia U.S.A., Fe-chlorite
CCa-1 California U.S.A.) or are industrial products (quartz and calcite
from Fluka, illite sarospatakite from FüzerradvanyHungary, andmont-
morillonite cloisite–Na fromSouthern Clay Products U.S.A.). A dataset of
35 samples was used for training the regression trees. To obtain the re-
quired opacity for the spectral measurements each sample had a gravi-
metric content of 15 g.

Samples 1–25 consisted of gravimetric, intimate mineral mixes of
pure kaolinite, dioctahedral mica, smectite, calcite and quartz with a
grain size of b63 μm. Each of these samples had a quartz content of
25 wt.%, while the other minerals contributed to the remaining 75 wt.%
with abundance as indicated in Table 1. A pure sample of each mineral
was included as reference for the absorption characteristics of the pure
minerals. With this laboratory experiment the true composition of the
sample can be assumed to be known and the chance that there are un-
known minerals influencing the model performance is minimised.

A sensitivity test was done to test themodel performance against the
presence of an unknownmineral onwhich the regression treeswere not
trained.Missing specific absorption componentsmight reduce the statis-
tical relationship between the EGO profiles andmineral contents includ-
ed in the analysis. Therefore, infive samples chloritewas admixed,which
is another common sheet silicate in soils (Dalton et al., 2004).

2.3.1.2. Spectral measurements and reflectance of minerals. Spectral
measurementswere performed under laboratory conditionswith an An-
alytical Spectral Devices (ASD) Fieldspec 3 spectroradiometer. The
spectroradiometer covered the 0.350–2.500 μm wavelength region
with a resolution of 3 nm at 700 nm and 10 nm at 1400/2100 nm
(1.4 nm and 2 nm sampling interval). The samples were measured
using an ASD High Intensity Muglight (4 W quartz tungsten halogen
lamp) to minimise measurement errors associated with stray light and
specular reflection from the minerals. The powdered samples were
placed in pure quartz sample holders to avoid scattering from the sample
holder, since quartz lacks distinct absorption features in the measured
wavelength region. All sample holders were calibrated against a non-
reflecting reference standard prior to sample measurements.

The reflectance of pure minerals — including those studied in this
paper — was extensively reviewed by Clark et al. (1990) and Swayze et
al. (2003). Fig. 2 presents the continuum removed (CR) spectra of the
pure minerals; the spectra show clearly the strong absorption features
of water around 1.400 μm and 1.900 μm, related to the overtones and
combinations of the fundamental vibrational characteristics of water as
well as absorption from the OH bends. The diagnostic characteristic of
kaolinite is the double absorption feature around 2.150 μm and
2.200 μm; Dioctahedral mica has two primary absorption features
centred around 2.200 μm and 2.350 μm. Smectite contains water in the
crystal structure and therefore exhibits strong absorption near
1.400 μm and 1.900 μm. In the SWIR, it can be recognised by the single
sharp and symmetrical absorption at 2.200 μm due to the AlOH bend
and the smaller absorption around 2.250 μm. For calcite, second and
third overtones and combinations of the CO3 fundamentals occur in the
near IR. The two strongest absorptions are found at 2.500–2.550 μm
and 2.300–2.350 μm. Three weaker absorption bands occur near
2.120–2.160 μm, 1.970–2.000 μm and 1.850–1.870 μm. In the SWIR re-
gion, calcite is distinguished from the other minerals by the weaker ab-
sorption near 2.120–2.160 μm and the double absorption feature near
2.300–2.350 μm (Clark et al., 1990). Based on the bends which discrimi-
nate the minerals from each other we study the wavelength range be-
tween 2.100 and 2.400 μm. Within this wavelength range quartz does
not have any absorption feature. Direct estimation of quartz abundances
using EGO and regression tree analysis is therefore not supported. As in-
dicated earlier it is important to include quartz into the mixtures. The



Table 1
Overview of prepared mineral samples, content is given in wt.% of the total mass of 15 g.

Sample no. Smectite Kaolinite Dioctahedral mica Calcite Quartz Chlorite

1 10 5 40 20 25 0
2 45 15 15 0 25 0
3 5 5 50 15 25 0
4 20 10 10 35 25 0
5 10 15 15 35 25 0
6 0 0 60 15 25 0
7 10 15 40 10 25 0
8 45 20 5 5 25 0
9 25 15 30 5 25 0
10 0 10 40 25 25 0
11 20 15 25 15 25 0
12 15 10 20 30 25 0
13 5 5 55 10 25 0
14 0 0 20 55 25 0
15 0 0 0 75 25 0
16 60 5 10 0 25 0
17 50 10 5 10 25 0
18 15 0 30 30 25 0
19 0 20 55 0 25 0
20 0 0 50 25 25 0
21 15 10 35 15 25 0
22 5 0 35 35 25 0
23 15 5 20 35 25 0
24 50 5 20 0 25 0
25 10 0 45 20 25 0

Pure minerals
26 100 0 0 0 0 0
27 0 100 0 0 0 0
28 0 0 100 0 0 0
29 0 0 0 100 0 0
30 0 0 0 0 100 0

Addition of chlorite⁎

31 (1) 10 5 40 20 15 10
32 (2) 30 10 15 0 20 25
33 (4) 20 10 10 35 15 10
34 (8) 45 20 5 5 20 5
35 (14) 0 0 20 55 10 15

⁎ Numbers within brackets refer to the corresponding number of the sample without
chlorite.
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presence of quartz affects the scattering of light, thereby affecting the
spectral features of the other minerals within the mixture. While the
shape of the CR feature of a mineral is unlikely to be affected by quartz,
the depth, asymmetry and saturation of the fitted Gaussians will likely
be affected (Clark, 1999).
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Fig. 3. Continuum removed spectrum of kaolinite where the absorption components within
studied wavelength range (red lines).
2.3.1.3. Selection of absorption components for curve fitting by EGO.
Based on the number of minerals and their specific absorption behav-
iour, as discussed in the previous section, we expected that six indi-
vidual absorption components centred around 2.170, 2.210, 2.250,
2.310, 2.350 and 2.380 μm would be required to optimally model
abundances. From here on, these components are referred to as ab-
sorption components 1 to 6. For those spectra having 2 absorption fea-
tures within the 2.100–2.400 μm region, the reflectance was split into
the two primary absorption features around 2.120–2.270 μm and
2.280–2.400 μm, referred to as “feature 1” and “feature 2”, respectively.
Fig. 3 illustrates the positioning of the individual absorption compo-
nents and features using the spectrum of pure kaolinite (Fig. 3).

2.3.2. Field experiment

2.3.2.1. Field sampling. The regional case study was located in Northern
Morocco, centred at around 34.0° N, −4.5° W and covers an area of
15,000 km2. While the Rif Mountains, an area of highlands, form the
northern border, the Anti-Atlas Mountains is the southern border
with areas of plateaus and intermountain valleys in between. This
area offered a diverse lithological setting including sedimentary,
igneous and metamorphic rock types. For training of the regression
trees, a sample was collected which covered the variability in mineral-
ogy present in the study area. We designed a sparse, remote sensing-
based sampling approach making use of conditioned Latin Hypercube
Sampling (cLHS) to assess variability in soil properties at regional
scale (Mulder et al., 2012a).

At 73 sites, a mixed soil sample from a 15 × 15 m plot was taken of
the top 5 cm of the soil. Two additional samples originating from a soil
profile and duplicate samples of 2 sites were includedwhich resulted in
a total sample size of 77. The soil samples were dried at 70 °C, sieved
and crushed to a powder (b20 μm) with a McCrone micronising mill
in ethanol. To improve mineral quantification by X-ray diffraction, the
organic matter was destroyed for samples having organic matter con-
tent higher than about 10%. Spectral measurements were taken with
the same setup as described in Section 2.3.1 and the absorption compo-
nents used for curve fitting and training of the regression tree were
identical to those described in Section 2.3.1.

2.3.2.2. X-ray powder diffraction for analysis of soil mineralogical com-
position. Mineralogy of the fine powdered samples (b0.20 μm) was
determined on randomly oriented powder specimens with X-ray dif-
fraction analysis. The second sample preparation for clayey materials
produces oriented specimens, which enhanced the basal reflections
Feature 2

nent 3 Component 4

Component 5

Component 6

2.3 2.4

ngth (µm) 

the 2.100–2.400 μm region are indicated along with the two spectral regions within the



Table 2
Ranges of the mineral abundance (wt.%) present in the field samples as determined by
XRD analysis.

Mineral Average
(wt.%)

Range
(wt.%)

Error (3σ)
(wt.%)

No.
samples

Anatase 1.0 0.4–1.9 0.2–0.3 41
Aragonite 7.1 1.9–11.1 0.7–0.8 3
Calcite 21.4 0.7–75.3 0.3–1.6 63
Chlorite 5.0 0.8–25.4 0.4–1.8 52
Cristobalite 2.8 1.2–4.5 0.3–0.5 3
Epidote 1.9 1.9 0.5 1
Dolomite 6.9 0.8–33.9 0.3–0.9 29
Goethite 5.2 1.2–11.6 0.8–1.3 14
Gypsum 1.5 1.5 0.5 1
Hematite 1.4 0.4–4.6 0.2–0.4 27
Dioctahedral mica 10.5 1.6–56.9 0.4–2.1 66
Kaolinite 6.7 1.3–16.7 1.1–2.7 49
K-feldspar 3.1 0.9–18.6 0.5–1.3 42
Palygorskite 6.8 6.8 0.8 1
Plagioclase Ab 4.9 1–23.8 0.4–1.2 69
Quartz 42.5 12.6–83.9 0.6–1.8 77
Rutile 1.1 0.6–1.8 0.2–0.4 10
Smectite 28.6 9.4–52.9 1.4–3.0 25
I/S ML 20.7 6.5–42.4 2.3–3.6 10
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from the clay minerals thereby facilitating their identification. The
changes in the reflex positions in the XRD pattern by intercalation
of ethylene glycol were used for the identification of smectite. X-ray
measurements were made using a Bragg–Brentano Theta–2Theta
diffractometer Philips PW1820 using Cu Ka alpha radiation. The in-
strument was equipped with an automatic divergence slit, a graphite
monochromator and a NaI scintillation counter. The powder samples
were step-scanned at room temperature from 2 to 70° 2Theta (step
width 0.03° 2Theta, counting time 4 s). The qualitative phase compo-
sition was determined in comparison to the Powder Diffraction File of
the International Centre for Diffraction Data (ICDD PDF) database
using the software DIFFRACplus (Bruker AXS, 2012). The quantitative
mineral composition of the samples was calculated by Rietveld anal-
ysis using the Rietveld programme AutoQuan (GE SEIFERT)
(Bergmann et al., 1998; Kleeberg, 2005).

The ranges and variety of minerals within the field samples, deter-
mined by XRD analysis, are presented in Table 2. Due to the similar
structure of illite and muscovite, the minerals were not separated
with the XRD analysis and are treated as the sum of dioctahedral
mica in the field experiment. The interstratified illite/smectite min-
erals are summarised as I/S ML. This mineral type was not defined
more in detail with respect to the ratio illite/smectite and order of
layering. For the experiments those minerals were included which
(1) had absorption features in the 2.100–2.400 μm region (Fig. 4),
(2) were frequently present in the samples and (3) had an average
content larger than 5%. Following these criteria, calcite, dioctahedral
mica, smectite and kaolinite were considered in this study. The
other minerals were deemed either subordinate to the selected
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Fig. 4. Continuum removed spectra of the field samples with the highest individual
abundances of kaolinite, calcite, dioctahedral mica and smectite.
minerals or did not contain the required spectral features to estimate
abundances using spectral unmixing approaches.

The use of field samplesmay introduce several errorswhich could re-
duce the accuracy of the approach. The uncertainties are related to addi-
tional traces of otherminerals and organicmatter, significant amounts of
minerals without diagnostic features in the 2.100–2.400 μm region and
measurement errors. Also, differences in the accuracy of theXRDanalysis
might influence the prediction accuracy. As can be seen from Table 2, the
error for the determined content of smectite (1.4–3.0 wt.%) and I/S ML
(2.3–2.6 wt.%) was higher compared to the errors for calcite (0.3–
1.6 wt.%), dioctahedral mica (0.4–2.1 wt.%) and kaolinite (1.1–
2.7 wt.%). Note that the regression tree was trained only on the
abundances of the minerals of interest. These minerals occur within an
unknown matrix, which might interfere with the measurements and
the subsequent analysis. However, owing to the sampling design we as-
sume that the samples also represent the non-analysed minerals associ-
ated with the composition of interest. Although unknown constituents
may affect the spectral behaviour this does not necessarily invalidate
the approach since regression tree analysis can deal with non-linear be-
haviour and interactions. Training of the regression trees was done by
using the XRD determined abundance of eachmineral as theweight per-
centage of the mineral with respect to the total weight of the sample.
Therefore, the regression tree predictions are also expressed as absolute
weight percentages.

3. Results

3.1. Curve fitting

Table 3 shows the parameters of the EGO profiles fitted for the
pure minerals; calcite was fitted with three EGO profiles positioned
around the typical absorption components of calcite. The spectrum
of calcite was fitted with one feature ranging from 2.120 to
2.400 μm. Dioctahedral mica required two EGO profiles positioned
around the two strongest typical absorption components. The feature
was split into two absorption features to obtain a better fit. Smectite
was fitted with two EGO profiles positioned around the typical absorp-
tion features of smectite by one feature within 2.100–2.280 μm wave-
length range. Kaolinite was fitted with four EGO profiles and was split
into the wavelength ranges of 2.120–2.240 μm and 2.270–2.450 μm.
The typical absorption between 2.120 and 2.240 μm was more difficult
to fit by anEGOprofile; this feature had the lowestfit of all themodelled
features. Overall, the low values for the RMSE of the estimated log re-
flectance per feature show that the EGO profiles fitted on the typical ab-
sorption components of themineral result in an accurate estimate of the
measured log reflectance of the absorption features.

Table 4 provides the results of the deconvolution of the spectra
from the 35 samples within the laboratory experiment. The total
number of fitted profiles is given and the minimum and maximum
parameter values as well. In addition, the average goodness of fit of
all samples is provided by the average RMSE of the estimated log re-
flectance per feature for all 35 samples along with the standard devi-
ation of the RMSE. The low average RMSE and standard deviation of
the estimated log reflectance shows that the curve fitting approach
approximates the measurements well. Splitting the reflectance into
two spectral regions was necessary for most samples. The samples
containing high concentrations of calcite were modelled by one fea-
ture. Samples containing relatively high concentrations of all four
minerals required more EGO profiles compared to samples with spe-
cific dominant minerals to obtain the same accuracy.

The position of the EGO profiles corresponded to those of the diag-
nostic absorption features of the individual minerals, with minor shifts
to smaller and longer wavelengths. In conclusion, the six expected ab-
sorption components of the minerals within the spectra were chosen
to reflect their dimensionality. The minimum and maximum values of
the saturation and asymmetry deviated strongly compared to the



Table 3
Model parameter values of the fitted EGO profiles to the pure minerals. In addition, the RMSE of the fitted log reflectance compared to the measured log reflectance is given for each
mineral. The EGO profile numbers correspond to the absorption components as identified in Section 2.3.1.

Calcite Dioctahedral mica

EGO Profile Position Intensity Width Saturation Asymmetry Position Intensity Width Saturation Asymmetry

1 2.158 0.012 0.010 −2.890 0.098 − − − − −
2 − − − − − 2.202 0.261 0.024 −3.68 * 10−5 0.011
3 2.288 0.082 0.028 −7.95 * 10−5 −0.356 − − − − −
4 − − − − − − − − − −
5 2.338 −0.173 0.021 1.10 * 10−4 −0.1000 2.341 0.050 0.014 −2.501 −0.111
6 − − − − − − − − − −

Feature1 Feature 2 Feature1 Feature 2

Continuum Continuum
Offset −5.165 − Offset −1.868 −4.723
Slope 1.274 − Slope 3.456 −9.971

RMSE 0.0008 − RMSE 0.0035 0.0011

Smectite Kaolinite

EGO Profile Position Intensity Width Saturation Asymmetry Position Intensity Width Saturation Asymmetry

1 − − − − − 2.164 −0.360 0.025 −2.87 * 10−4 −0.326
2 2.205 0.196 0.018 0.920 −0.073 2.206 0.0446 0.011 −1.48 *10−5 −0.147
3 2.239 0.062 0.010 0.883 0.101 − − − − −
4 − − − − − − − − − −
5 − − − − − 2.357 0.035 6.20 * 10−3 2.097 0.055
6 − − − − − 2.384 0.076 9.82 * 10−3 0.355 −0.012

Feature1 Feature 2 Feature1 Feature 2

Continuum Continuum
Offset −1.563 − Offset −8.329 −3.27
Slope 3.091 − Slope 17.590 6.27

RMSE 0.0016 − RMSE 0.0166 0.0014

Each absorption component is described by a position (μm), width as the full width at half maximum (μm), intensity (μm), saturation (−) and asymmetry (−). The values listed for
each continuum are the offset and slope of a straight line in wavelength and natural log reflectance.

285V.L. Mulder et al. / Geoderma 207–208 (2013) 279–290
values of the EGO profiles fitted to the pure minerals, especially for the
profiles 1, 3, 5 and 6. This indicates that the central limit theorem does
not fully apply to the spectra of mineral mixtures. To accurately fit the
absorption around the defined components, the EGO profile is required
to be modelled with use of the parameters for asymmetry and
saturation.

Table 5 provides the results of the deconvolution of the spectra
from the 77 samples within the field experiment. In addition, the av-
erage goodness of fit of all samples is provided by the average RMSE
of the estimated log reflectance per feature for all 77 samples along
with the standard deviation of the RMSE. The average RMSE and its
Table 4
Model parameters of the EGO profiles fitted to the 35 prepared samples. For each EGO profil
are given. In addition, the average RMSE and standard deviation of the fitted log reflectanc

EGO profile No. of samples Position Intensity

Min Max Min Max

1 24 2.158 2.193 −0.360 0.134
2 32 2.201 2.208 0.005 0.446
3 24 2.216 2.253 −0.069 0.100
4 10 2.284 2.309 −0.057 0.082
5 27 2.337 2.357 −0.173 0.077
6 14 2.364 2.385 0.006 0.076

Feature1
Average Standard 

deviation

RMSE 0.00189 0.0028

Each absorption component is described an EGO profilewhich has a position (μm), width as the
RMSE provides the measure for goodness of fit of the estimated log reflectance compared to th
standard deviation of the estimated log reflectance show that the
curve fitting resulted in small differences between the observed and
predicted log reflectance. Of most interest are the differences be-
tween the obtained parameter values compared to those of the labo-
ratory experiment. The field samples required fewer EGO profiles
than the laboratory experiment which can be attributed to the fact
that most of these samples consisted of at most two dominant min-
erals. The intensities were lower and the saturation and asymmetry
effects strongly increased. The shifts in position towards higher and
lower wavelengths were also stronger but they were still well
modelled by the six absorption components of the minerals. Fewer
e the total number of fitted profiles and the minimum and maximum parameters values
e for the full sample is given.

Width Saturation Asymmetry

Min Max Min Max Min Max

0.009 0.025 −4.842 38.88 −0.327 0.098
0.011 0.024 −0.501 0.920 −0.260 0.221

−0.013 0.018 −3.343 14.57 −0.226 0.199
0.008 0.032 −3.987 3.705 −0.427 0.027
0.006 0.022 −44.87 13.61 −0.305 0.055
0.006 0.015 −30.50 6.107 −0.438 0.093

Feature 2
Average Standard 

deviation

0.00058 0.00030

full width at halfmaximum(μm), intensity (μm), saturation (−) and asymmetry (−). The
e measured log reflectance of the prepared samples.



Table 5
Model parameters of the EGO profiles fitted to the 77 field samples. For each EGO profile the total number of fitted profiles and the minimum and maximum parameters values are
given. In addition, the average RMSE and standard deviation of the fitted log reflectance for the full sample is given.

EGO profile No. fitted Position Intensity Width Saturation Asymmetry

Min Max Min Max Min Max Min Max Min Max

1 37 2.171 2.198 0.008 0.078 0.008 0.028 −6.824 8.253 −0.165 0.110
2 75 2.202 2.216 −0.077 0.165 0.007 0.028 −9.114 1.136 −0.217 0.266
3 72 2.215 2.333 −0.026 0.062 0.008 0.019 −4.953 48.96 −0.160 0.300
4 13 2.281 2.309 −0.017 0.041 −0.009 0.035 −11.81 14.15 −0.445 0.290
5 65 2.312 2.369 −0.014 0.064 0.006 0.187 −21.98 56.68 −1.016 1.692
6 9 2.376 2.396 −0.013 0.015 0.005 0.505 −6.863 11.14 −0.307 3.618

Feature1 Feature 2

Average Standard 
deviation

Average Standard 
deviation

RMSE 0.0020 0.0006 0.00056 0.00034

Each absorption component is described by a position (μm), a full width at half maximum (μm), intensity (μm), saturation (−) and asymmetry (−). The RMSE provides the measure
of goodness of fit of the predicted log reflectance compared to the observed log reflectance of the field samples.
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EGOs were fitted around the smaller absorption components (1, 4 and
6) which could indicate that the weaker absorption components of
the minerals, around 2.170 μm, 2.310 μm and 2.380 μm, became sub-
sidiary absorptions. Overall, the appearances of individual absorption
components were less intense in the field samples due to the noise in-
troduced relating to the additional traces of other minerals, signifi-
cant concentrations of minerals without diagnostic features in the
2.100–2.400 μm region (Table 2).

3.2. Prediction of mineralogy by regression trees

3.2.1. Laboratory experiment
The mineral abundances of the prepared samples were predicted

by pruned regression trees which included a maximum of seven
EGO variables (Table 6). The splits of the regression trees were mainly
based on the position, intensity and width of the EGO profiles. The
predicted samples fell into the numerical ranges defined by the ter-
minal nodes of the regression tree. For example, Fig. 5 shows the
pruned regression tree for dioctahedral mica where the variables
with the threshold to split the dataset are given at the nodes and
the total number of samples assigned to each terminal node.

Cross-validationof thepruned regression trees shows that (Fig. 6a–d);
kaolinite resulted in six terminal nodes and abundance was predicted
with a RMSE of 4 wt.% and R2 of 0.92. Dioctahedral mica resulted in
eight terminal nodes and was predicted by the regression tree with an
RMSE of 9.3 wt.% and R2 of 0.82. Calcite resulted in eight terminal nodes
and was predicted by the regression tree with an RMSE of 7.3 wt.% and
R2 of 0.88. Smectite resulted in seven terminal nodes and was predicted
by the regression tree with an RMSE of 8 wt.% and R2 of 0.85. Calculation
of the covariance of the predicted minus the measured mineral abun-
dance showed that neither the over- or under estimation of a mineral
were correlated to the other minerals.
Table 6
Variables used at splits in the pruned regression trees for the laboratory experiment.

Regression tree EGO profile parameters

Position Intensity Width Asymmetry Saturation

Kaolinite EGO 2⁎

EGO 3
EGO 1
EGO 2
EGO 3

Dioctahedral mica EGO 3 EGO 3
EGO 5

EGO 2 EGO 2 EGO 2
EGO 5

Smectite EGO 3 EGO 1 EGO 2 EGO 2 EGO 2
Calcite EGO 1 EGO 2 EGO 2

EGO 5
EGO 1

⁎ EGO 1: 2.170 μm, EGO 2: 2.210 μm, EGO 3: 2.250 μm and EGO 5: 2.350 μm.
For dioctahedral mica the major splits in the regression tree were
based on the position and intensity of the absorption component
around 2.250 μm, and the width, asymmetry and saturation around
2.210 μm. Smaller splits used the intensity and saturation around
2.350 μm (Table 6). The major splits for the pruned regression tree
for kaolinite were based on the intensity and width of the EGO pro-
files around 2.210 μm and 2.250 μm and smaller splits used the
width around 2.170 μm (Table 6). Although the small subsidiary ab-
sorptions at wavelengths of >2.250 μm could be fitted, they were
not significantly present within the mixture to be used as a prediction
parameter. The EGO profiles corresponding to the typical absorption
components of smectite around 2.210 μm and 2.250 μm were used
for partitioning of the dataset; the asymmetry and saturation of the
EGO profile around 2.210 μm and the position around 2.250 μm
were used for the major splits. The typical v-shape of the smectite ab-
sorption becomes less distinct and intense within mixtures due to
saturation. With increasing saturation of the absorption component
around 2.250 μm the width of the EGO profile around 2.210 μm and
the asymmetry of the EGO profile around 2.250 μm increases. The
prediction of calcite was based on the width of the EGO profile around
2.350 μm, and the position around 2.170 μm and the parameters re-
lated to the EGO profile around 2.210 μm. Taking into account the
strong absorption components of calcite around 2.350 μm (Fig. 2), it
was to be expected that changes related to this feature would be im-
portant for defining the splits of the regression tree.

In Table 7 the differences between the predictedmineralogy from the
samples with added chlorite are given. Small errors occur up to 3 wt.%,
with the exception of smectite in sample 2 and dioctahedralmica in sam-
ple 14, and the latter deviating just 6 wt.% difference with the measured
content.Mineral concentrations inmost of these “contaminated” samples
EGO Width < 0.02

80%
No.=2

EGO 5 Intensity < -0.14

EGO 2 Assymetry < 0.080%
No.=2

EGO 3 Intensity >= 0.04 47%
No.=3

EGO 2 Saturation < 1.0 e-4

14%
No.=13

EGO Position >= 2.235

2%
No.=2

43%
No.=4

EGO 5 Saturation < 8.5

30%
No. = 7

55%
No.=1

Fig. 5. Regression tree for dioctahedral mica, the thresholds at a specific split with the
assigned EGO parameter, the mineral abundance (wt.%) and the number of samples for
each terminal node are given.
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predicted mineralogy is presented by boxplots of the samples which were assigned to the terminal nodes of the regression tree.
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were predicted correctly. This indicates that the pruned regression trees
trained on the specific mineral absorption components were rather in-
sensitive to contamination by chlorite.

Finally, the absorption components around 2.210 μm and 2.350 μm
weremost diagnostic;modelled changes of these components and their
relation to the other componentswere the key to predictingmineralogy
in composite mixtures. These results and the constructed regression
trees show that indeed there is a statistical relationship between the
model parameters and their representativeness of the complex interac-
tion between diagnostic absorptions andmineralogy. Although intensi-
ty andwideningwere themost important parameters, some regression
Table 7
Difference in the predicted mineralogy of the samples containing additional chlorite.

Sample
no.

Mineral Content
(%)

Predicted content (%) Difference between
predicted contents

Original
sample

Sample with
chlorite

1 Kaolinite 5 8.9 8.9 0.0
Dioctahedral
mica

40 29.3 29.3 0.0

Smectite 10 8.5 8.5 0.0
Calcite 20 27.5 27.5 0.0

2 Kaolinite 15 8.9 8.9 0.0
Dioctahedral
mica

15 13.9 13.9 0.0

Smectite 45 51.3 8.5 −42.7
Calcite 0 4.4 0.0 −4.4

4 Kaolinite 10 8.9 8.9 0.0
Dioctahedral
mica

10 13.9 13.9 0.0

Smectite 20 10.0 8.5 −1.5
Calcite 35 27.5 27.5 0.0

8 Kaolinite 20 17.5 17.5 0.0
Dioctahedral
mica

5 13.9 13.9 0.0

Smectite 45 45.0 45.0 0.0
Calcite 5 4.4 8.3 3.9

14 Kaolinite 0 2.1 2.1 0.0
Dioctahedral
mica

20 29.3 13.9 −15.4

Smectite 0 8.5 8.5 0.0
Calcite 55 55.0 55.0 0.0
trees required the parameters related to saturation or asymmetry
which stresses the added value of including these parameters for the
deconvolution of the spectra. Note that our sample was small, which
resulted in simple trees with few terminal nodes; a larger sample of
mineral mixtures spanning the volume space may produce more com-
plex trees with finer resolution in the terminal nodes.
3.2.2. Field experiment
The relativemineral abundance in the field sampleswas predicted by

training and pruning the regression trees by the same EGO profiles used
for the laboratory experiment. New regression trees were trained be-
cause unknown constituents may have affected the spectral behaviour
and thereby changing the relation of the EGO parameters and mineral
abundances. The regression trees included a maximum of five variables
for their splits (Table 8). The coefficient of determination (R2) and
RMSEof predictedmineral content (wt.%) obtained fromcross validation
of the pruned regression trees generally were lower compared to the
controlled experiments. This indicates that the fit of the trees were less
accurate and the estimated error in the mineral abundance was conse-
quently lower. Because more samples were available for training of the
tree, more terminal nodes could bemade and thereby the error estimate
of the mineral abundance reduced. The splits of the regression trees
weremainly based on intensity and asymmetry rather than the position,
intensity and width of the trees in the laboratory experiment. Kaolinite
Table 8
Variables used at splits in the pruned regression trees for the field experiment.

Regression tree EGO parameter values

Position Intensity Width Asymmetry Saturation

Kaolinite EGO 3⁎ EGO 2 EGO 2
EGO 3

Dioctahedral mica EGO 2
EGO 5

EGO 2
EGO 3

EGO 2

Smectite EGO 2
EGO 3

EGO 2
EGO 3

Calcite EGO 5 EGO 5 EGO 1
EGO 2

⁎ EGO 1: 2.170 μm, EGO 2: 2.210 μm, EGO 3: 2.250 μm and EGO 5: 2.350 μm.
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resulted in seven terminal nodes and abundance was predicted with an
RMSE of 3 wt.% and R2 of 0.70 (Fig. 7a). The deviations occur in samples
where absence was predicted while the actual content of the samples
where within a range of 0–8 wt.% kaolinite. Dioctahedral mica resulted
in eight terminal nodes and was predicted by the regression tree with
an RMSE 5 wt.% and R2 of 0.63 (Fig. 7b). Calcite resulted in seven termi-
nal nodes andwas predicted by the regression treewith an RMSE 8 wt.%
and R2 of 0.80 (Fig. 7d). The nodes including the absence and traces of
calcite contained the samples with the greatest deviation resulting in a
general underestimation of calcite. Unfortunately, with respect to smec-
tite it was not possible to build a regression tree with a better fit and ac-
curacy (R2 = 0.40, RMSE = 12 wt.%) (Fig. 7c) without violating the
criteria set for pruning the regression tree. Calculation of the covariance
of the predicted minus the measured mineral abundance showed that
neither the over- or under estimation of a mineral were correlated to
the other minerals.

The independent validation on 16 samples resulted in an RMSE of
5 wt.% for kaolinite, 9 wt.% for dioctahedral mica, 18 wt.% for smectite
and 14 wt.% for calcite. The overall lower RMSE (%) within the field ex-
periment can be attributed to specific mineral composition of the field
samples compared to the prepared samples. The relative abundance of
minerals was usually dominated by two minerals with only smaller
contributions of other minerals. Also, more samples were available for
training the regression tree. From Fig. 7(a–d) it can also be observed
that the model has difficulties with the prediction of the absence of
minerals; the main reason can be attributed to the precision of the tree,
due to the small sample (smectite, the smallest set consisted of 25
samples) few terminal nodes could be set. For both kaolinite and
dioctahedral mica the model estimates a presence up to 5 wt.% in sam-
ples where these minerals are absent. For calcite and smectite the abun-
dance estimate for absentminerals is up to amaximumof 10 wt.%. These
lower thresholds for kaolinite and dioctahedral mica can be attributed to
lower abundance in the samples used for training the trees.
4. Discussion

This work demonstrated that the combination of spectral decon-
volution of SWIR spectra with regression tree analysis allows simulta-
neous quantification of more than two minerals within a mixture. The
fact that more than two minerals can be simultaneously quantified is
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Fig. 7. a–d. Predicted relative mineral content (wt.%) from the field experiment compared to
calcite. The predicted mineralogy is presented by boxplots of the samples which were assig
an improvement on similar MGM based methods. Key to this improve-
ment was the regression tree analysis that followed the EGO analysis.

It was found that the degree of expression of absorption components
was different between thefield samples and the laboratorymixtures. Due
to the nature of the field samples, the simple representation of the com-
plex scattering behaviour by a few Gaussian bands required asymmetry
and saturation to accurately deconvolve the spectra. Also, asymmetry of
the EGO profiles proved to be an important parameter for the estimation
of mineral content with field samples. For operational use, these results
emphasise the importance of using (1) field samples for training of the
model rather than laboratory mixes and (2) deconvolution using the
EGO algorithm. For terrestrial studies it is therefore recommended that
a representative surface sample is collected using a strategic sampling de-
sign, such as the one used by Mulder et al. (2012a).

The regression tree analysis was an improvement on the band ratios
(Kanner et al., 2007; Noble et al., 2006) and the multiple linear regres-
sion (MLR) (Bishop et al., 2011) that were used to relate mineral
abundances to the parameterised reflectance of mineral mixtures. Re-
gression trees can deal with nonlinearity and interactions between
the EGO parameters which made it possible to accurately predict min-
eral abundances from complex mixtures. The regression tree analysis
used in this work uses a heuristic approach of making local optimal
choices and finding a global optimum (cf., greedy algorithm), whereby
construction of the tree is based on a local optimisation, that is at each
node the data are partitioned — giving the best result for that specific
node. This local optimisation can result in an initial split based on
some criteria which at subsequent levels result in suboptimal splits. Im-
provements are expected by using less greedy algorithms such as
boosted regression trees or random forest (Brown et al., 2006).

Alternatively, methods based on the single scattering albedo model
of Hapke (Hapke, 2002), such as the work of Warell and Davidsson
(2010) and Mustard and Pieters (1987), have proven successful in si-
multaneous retrieval of mineral abundances from prepared mixtures.
Despite that, the accuracy of estimated mineral abundances from natu-
ral samples proved to be rather low. Our method is a strong competitor
of the Hapke-based models. Especially, considering the required de-
tailed information on the scattering properties of all endmembers in
the model of Hapke (Keshava and Mustard, 2002) and the lower accu-
racy for estimates from natural samples (Warell and Davidsson,
2010). Nevertheless, there are limitations to our approach and possible
solutions as outlined below.
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4.1. Limitations and outlook

4.1.1. Retrieval of smectite abundances
A likely explanation for the unsuccessful prediction of smectite is

that smectite is a group consisting of monoclinic clay minerals such
as e.g. montmorillonite. Within this group the clays have different
ions within the octahedral layer; particularly Fe3+or Al3+, but also
Mg2+, occur depending on the dioctahedral or trioctahedral character
of the octahedral layer (Moore and Reynolds, 1997). Mg is not com-
monly present in a dioctahedral layer but can be present due to
charge compensation in the tetrahedral layers. Within the studied
wavelength range strong absorption features of minerals are related
to the overtones and combinations of the fundamentals of either the
OH bend of AlOH, MgOH or Fe3+OH. Also, within the laboratory ex-
periment Na-rich montmorillonite was used, while the field samples
originate from a calcite-rich environment resulting in Ca-richmontmo-
rillonite. As discussed by Clark et al. (1990), variations in the Na/Ca ratio
cause shifts of the 2.200 μm feature and with increasing Ca2+ concen-
trations the 2.250 μm feature becomes less pronounced (see also Figs.
2 and 4). The prediction model for smectite was trained by using both
absorptions, which subsequently resulted in poor performance. As indi-
cated by Bishop et al. (2011); if differences in the octahedral cations
occur, samples should not be treated spectrally as one group (Bishop
et al., 2011). So, by discriminating among the dioctahedral clayminerals
by their variations in their cation concentrations and by training the re-
gression trees individually, the prediction of smectite abundance could
be improved.

4.1.2. Outlook
A contribution that could not yet be included is abundance esti-

mates from other minerals having their absorption features outside
the studied wavelength range. Common minerals found on Earth, be-
sides quartz and feldspars e.g. goethite, hematite or chlorite, have
their electronic absorption bands at shorter wavelengths. Similar,
dominant soil minerals such quartz, alkali feldspars and plagioclases
have fundamental absorptions in the MIR and occasionally have
broad electronic absorption around 1.2 μm due to structural Fe. With-
in the domain of reflectance spectroscopy it would be recommended
to extend the studied wavelength range to the full VNIR–SWIR range
(0.4–3.0 μm) to allow analyses of more minerals which is feasible
since most spectrometers usually cover this wavelength range.

Another challenge for the future includes the integration of the sug-
gested approachwith a spatial component. Spatially explicit information
provides important information on parent material and soil formation
(Egli et al., 2008;Mavris et al., 2011). Currently, satellites do not provide
the fine spectral resolution needed to accurately deconvolve the spectra
into components that can be related to mineral abundances. As a result,
recent research efforts especially focus on the exploration and identifica-
tion of minerals rather than abundances using RS data (Lau et al., 2012;
Sgavetti et al., 2009; van der Meer et al., 2012; Viscarra Rossel, 2011).
Compared to our work these studies do have a spatial context and pro-
vide insight in the spatial distribution of mineral characterisationwithin
a study area. However, combining the presented work with additional
geostatistical analysis could be key to e.g. the creation of mineral abun-
dance maps of large areas.

5. Conclusions

The retrieval of mineralogy from SWIR reflectance presented and
evaluated in this paper aims to estimate the modal abundance of multi-
ple minerals by a spectral curve fitting approach. Subsequently, the
model parameters were used to predict mineral abundance by regres-
sion tree analysis. By using EGO, the spectra between 2.100 μm and
2.400 μm were accurately fitted in both the laboratory and field experi-
ment (average RMSE of 0.004). This required the isolation of the absorp-
tion features and modelling of the individual absorption components
within these absorption complexes. The position of the absorption com-
ponents compared to those of the known diagnostic absorption features
of the individual minerals showed shifts towards shorter and longer
wavelengths. The parameters addressing the saturation and asymmetry
of the absorption components appeared to be essential to obtain an accu-
rate fit for the field samples.

The regression trees calibrated for the laboratory experiment based
the splits mainly on the position, intensity and width of the fitted ab-
sorption components. The calibrated trees in the field experiment
resulted in splits based on intensity and asymmetry rather than posi-
tion, intensity and width. The selected parameters reflected the major
changes in absorption of specific minerals and to changes in relation
to the other known minerals.

The cross-validation results showed that the regression tree models
were able to predict themineral abundanceswell by establishing the sta-
tistical relationship with the EGO model parameters. Within the labora-
tory experiment abundance of kaolinite, dioctahedral mica, calcite and
smectite were predicted with respectable RMSE values of less than
9 wt.% and a minimum detection limit up to 10 wt.%. Prediction of min-
eralogy with field samples showed good results for calcite, dioctahedral
mica and kaolinite, with RMSE values less than 8 wt.%, similar minimum
detection limits but lower coefficients of determination. Prediction of
smectite abundancewas less successful due to the spectral variations re-
lated to differences in the octahedral cations in the smectites of the
analysed powders. Substitution of part of the quartz by chlorite at the
prediction phase hardly affected the accuracy of the predicted mineral
contents; this suggests that the method is robust in handling the omis-
sion ofminerals during the training phase. On the other hand, the degree
of expression of absorption components was different between the field
samples and the laboratorymixtures. This demonstrates that themethod
should be calibrated and trained on a training set representing the range
of localmineral compositions.With this studywe demonstrated that our
method allows estimation of more than two minerals within a mixture
and thereby enhances the perspectives of spectral analysis for mineral
abundances.
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